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Anomalous scalings for fluctuations of inertial particles concentration and large-scale dynamics

Tov Elperin, Nathan Kleeorin, and Igor Rogachevskii
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Small-scale fluctuations and mean-field dynamics of the number density of inertial particles in turbulent fluid
flow are studied. Anomalous scaling for the second-order correlation function of the number density of inertial
particles is found. The mechanism for the anomalous scaling is associated with the inertia of particles that
results in a divergent velocity field of particles. The anomalous scaling appears already in the second moment
when the degree of compressibilitys.1/27 ~wheres is the ratio of the energies in the compressible and the
incompressible components of the particles velocity!. The d-correlated in time random process is used to
describe a turbulent velocity field. However, the results remain valid also for the velocity field with a finite
correlation time, if all moments of the number density of the particles vary slowly in comparison with the
correlation time of the turbulent velocity field. The mechanism of formation of large-scale inhomogeneous
structures in spatial distribution of inertial particles advected by a low-Mach-number compressible turbulent
fluid flow with a nonzero mean temperature gradient is discussed as well. The effect of inertia causes an
additional nondiffusive turbulent flux of particles that is proportional to the mean temperature gradient. Inertial
particles are concentrated in the vicinity of the minimum~or maximum! of the mean temperature of the
surrounding fluid depending on the ratio of the material particle density to that of the surrounding fluid. The
equation for the turbulent flux of particles advected by a low-Mach-number compressible turbulent fluid flow
is derived. The large-scale dynamics of inertial particles is studied by considering the stability of the equilib-
rium solution of the derived equation for the mean number density of the particles. A modified Rayleigh-Ritz
variational method is used for the analysis of the large-scale instability.@S1063-651X~98!04209-3#

PACS number~s!: 47.27.Qb, 47.40.2x
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I. INTRODUCTION

Turbulent transport of passive scalar~e.g., number density
of particles! advected by an incompressible fluid flow in th
caseU5v has been studied in a large number of public
tions. HereU is the particle velocity andv is the velocity of
the surrounding fluid.

Interesting features in turbulent transport of passive sc
appear whenUÞv. In this case certain phenomena, e.g., t
bulent thermal diffusion@1#, turbulent barodiffusion@2#, and
self-excitation, i.e., exponential growth of fluctuations of t
number density of inertial particles@3# occur. These effects
are caused by inertia of particles that results in a diverg
velocity field of particles. The self-excitation of fluctuation
of the number density of particles results in the intermitten
in spatial distribution of inertial particles@3#. Notably, small-
scale inhomogeneities in the spatial distribution of iner
particles were observed in the laboratory@4# and in the at-
mospheric turbulent flows@5,6#.

There are two types of intermittency of passive sca
distribution: the intermittency in the systems with and wit
out external pumping. Intermittency in the systems witho
external pumping was predicted by Zeldovich, Molchan
Ruzmaikin, and Sokoloff in 1985~see, e.g.,@7–9#!. In these
systems under certain conditions there is a self-excitatio
fluctuations of passive scalar or vector~magnetic! fields. The
growth rategs of the s-order correlation function of passiv
scalar~see@3#! and vector~see@9,10#! fields is given bygs
;s2g2 for s@1 @whereg2 is the growth rate of the second
order correlation function of passive scalar or vector~mag-
netic! fields#. This implies that wheng2.0 ~i.e., fluctuations
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of passive fields are excited!, higher moments grow faste
than lower moments, i.e.,gs.gs21 andgs.sg2 /2. This re-
sults in intermittency, i.e., the appearance of sharp peak
which the main part of the field intensity is concentrate
Fluctuations of vector~magnetic! can be excited even by
incompressible turbulent three-dimensional~3D! flows of
conducting fluid~see, e.g.,@9,10#!. On the other hand, pas
sive scalar fluctuations~e.g., fluctuations of the particle
number density! can be excited whenUÞv ~e.g., for inertial
particles! or whenU5v but div vÞ0 ~e.g., for a low-Mach-
number compressible turbulent fluid flow! @3#.

Intermittency in the systems with external pumping w
predicted by Kraichnan in 1991~see, e.g.,@11#!. Here the
fluctuations of passive scalar are sustained by an exte
source. In these systems a problem of anomalous sca
arises. The anomalous scaling means the deviation of
scaling exponents of the correlation function of a pass
field from their values obtained by the dimensional analys
For incompressible turbulent flow and whenU5v the
anomalous scalings for scalar field can occur only beginn
with a forth-order correlation function~see e.g.,@12–14#!
while for the vector~magnetic! field the anomalous scaling
appear already in the second moment@10,15#.

In the present paper we show that the anomalous scal
appear already in the second-order correlation function of
number density of inertial particles when the degree of co
pressibilitys.1/27 ~wheres is the ratio of the energies in
the compressible and the incompressible components of
particles velocity!. In this case there is no self-excitation o
fluctuations of the number density of inertial particles a
these fluctuations are sustained by an external source.
3113 © 1998 The American Physical Society
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use here for simplicity thed-correlated in time random pro
cess to describe a turbulent velocity field. However, the
sults remain valid also for the velocity field with a finit
correlation time, if all moments of the number density of t
particles vary slowly in comparison with the correlation tim
of the turbulent velocity field~see, e.g.,@16#!.

Which type of intermittency can occur in a system?
depends on the Reynolds number in the case of inertial
ticles and on the magnetic Reynolds number in the cas
magnetic fluctuations. When the Reynolds number is lar
than a certain critical value the first type of intermitten
~without external pumping! occurs@3#. On the other hand
when the Reynolds number is smaller than that the cer
critical value the second type of intermittency~with external
pumping! appears.

WhenUÞv the dynamics of the mean number density
inertial particles are strongly changed. In the present pa
we study large-scale dynamics of inertial particles in a lo
Mach-number compressible turbulent fluid flow. We discu
here a mechanism of formation of large-scale inhomo
neous structures in spatial distribution of inertial partic
advected by a turbulent fluid flow with a nonzero mean te
perature gradient. This effect is caused by both a diverg
particles velocity field of and the correlation between te
perature and velocity fluctuations of the surrounding flu
@1,2#. This phenomenon results in a relatively strong nond
fusive mean flux of inertial particles in regions with me
temperature gradients. Under certain conditions the in
spatial distribution of small inertial particles evolves into
highly inhomogeneous large-scale pattern where dom
with increased particles concentration border on domains
pleted of particles.

In this paper we have derived an equation for the tur
lent flux of particles advected by a low-Mach-number co
pressible turbulent fluid flow. In our previous study@1# only
the case with very small compressibility of fluid flow~i.e., u
div vu!u div Uu) was considered. The large-scale dynam
are studied by considering the stability of the equilibriu
solution of the derived evolution equation for the mean nu
ber density of the particles for large Pe´clet numbers. The
resulting equation is reduced to an eigenvalue problem f
Schrödinger equation with a variable mass, and a modifi
Rayleigh-Ritz variational method is used to estimate the lo
est eigenvalue corresponding to the growth rate of the in
bility.

II. SMALL-SCALE FLUCTUATIONS

Number densitynp(t,r ) of small particles in a turbulen
flow is determined by the equation:

]np

]t
1¹¢ •~npU!5DDnp , ~1!

whereU is a random velocity field of the particles that the
acquire in a turbulent fluid velocity field, andD is the coef-
ficient of molecular diffusion. We consider the case of lar
Reynolds and Pe´clet numbers.

To study the fluctuations of inertial particle concentrati
we derive equation for the second-order correlation funct
of particle concentration. For this purpose we use a met
-
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of path integrals~Feynman-Kac formula! that has been pre
viously employed in magnetohydrodynamics@8–10,17# and
in the problems of passive scalar transport in incompress
@8,9# and compressible@1–3,18# turbulent flows. The use o
this technique allows us to derive an equation for the seco
order correlation functionF5^Q(x)Q(y)&:

]F

]t
522@Dmn~0!2Dmn~r !#

]2F

]xm]yn
12^tb~x!b~y!&F

24^tum~x!b~y!&
]F

]xm
1I ~2!

~see Appendix A!, where Q5np2N, r5y2x, I
52^tb(x)b(y)&N2, and Dpm5Ddpm1^tupum&, and N
5^np& is the mean number density of particles,U5Vp1u,
andVp5^U& is the mean particles velocity,b5“

W
•u, andt

is the momentum relaxation time of a random velocity fie
u, which depends on the scale of turbulent motion. We
here for simplicity thed-correlated in time random proces
to describe a turbulent velocity field. However, the resu
remain valid also for the velocity field with a finite correla
tion time, if all moments of the number density of the pa
ticles vary slowly in comparison with the correlation time
the turbulent velocity field~see, e.g.,@16#!.

Using thed-correlated in time random process allows
to provide the analytical calculations and to obtain clos
results for the growth rate of the second-order correlat
functions of the particles number density, the threshold
the generation of the passive scalar fluctuations and t
anomalous scaling. The use of thed-correlated in time ran-
dom process to describe a turbulent velocity field is an
proximation. However, we study here two specific problem
~i! Conditions for the self-excitations of the fluctuations
the particles number density~i.e., the threshold of the gen
eration and growth rate of the the passive scalar fluctuat
in the vicinity of the threshold!; ~ii ! the anomalous scaling
behavior that is determined by the ‘‘zero mode’’ of the equ
tions for correlation functions of the particles number dens
~‘‘zero mode’’ is a mode with zero growth rate!. In the vi-
cinity of the threshold the characteristic time of variations
the high-order correlation functions of the particles numb
density is much larger than the momentum relaxation ti
t(r ). The latter allows us to use thed-correlated in time
random process to describe a turbulent velocity field.

Equation~2! for b50 was first derived by Kraichnan~see
@19#!. In this particular case,b50, this equation describes
relaxation of the second moment of particles number dens
On the other hand, whenb5” 0, i.e., when the velocity of
particle is divergent, Eq.~2! implies both, an effect of self-
excitation ~exponential growth! of fluctuations of particles
number density caused by the second term in Eq.~2! ~see
@3#! and anomalous scalings for the fluctuations~see Sec.
III !. Another interesting feature of Eq.~2! is the emergence
of the ‘‘internal’’ source termI 52^tb(x)b(y)&N2. The lat-
ter means that external pumping is not required in orde
sustain the fluctuations even when there is no self-excita
of the fluctuations of particles number density@3#.

We consider a homogeneous and isotropic turbulent
locity field of fluid. In this case the particle velocity field i
also homogeneous and isotropic, and it is compressible,
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¹¢ •UÞ0. Indeed, the velocity of particlesU depends on the
velocity of the surrounding fluidv, and it can be determine
from the equation of motion for a particle:

dU/dt5~v2U!/tp1F/mp , ~3!

wheretp is the characteristic time of coupling between t
particle and surrounding fluid~Stokes time!, F is the external
force, andmp is the mass of particles.

A solution of the equation of motion for particles can
written in the formU5v1tpf(v,tp). The second term in
this solution describes the difference between the local fl
velocity and particle velocity arising due to the small b
finite inertia of the particle. We calculate the divergence
the equation of motion for particles, and after simple m
nipulation we obtain

¹¢ •U52tp¹¢ •@~v–¹¢ !v#2tp
2¹¢ •F ]f

]vk

dvk

dt G . ~4!

When tp is very small Eq.~4! coincides with the results
obtained in@20#. The Navier-Stokes equation for the flu
yields¹¢ •@(v–¹¢ )v#52DPf /r, wherePf is the pressure of a
fluid. From the latter equation and Eq.~4! it is seen that
¹¢ –UÞ0.

The equation of motion~3! for a particle is valid when the
density of surrounding fluidr is much less than the materia
densityrp of particles (r!rp) @21,22#. However, the results
of the study can be easily generalized to include the casr
>rp using the equation of motion of particles in fluid flo
presented in@21,22#. This equation of motion takes into ac
count contributions due to the pressure gradient in the fl
surrounding the particle~caused by acceleration of the fluid!
and the virtual~‘‘added’’! mass of the particles relative to th
ambient fluid. Solution of this equation for smalltp coin-
cides with the solution of Eq.~3! except for the transforma
tion tp→b* tp , where

b* 5S 11
r

rp
D S 12

3r

2rp1r D .

The correlation function of a compressible homogene
and isotropic random velocity field was derived in@23#. The
second moment for the particle velocity can be chosen in
same form~see below!:

^tum~x!un~x1r !&5DTH @F~r !1Fc~r !#dmn

1
rF 8

d21S dmn2
r mr n

r 2 D 1rF c8
r mr n

r 2 J
~5!

~for details see@23#!, whereF85dF/dr, F(0)512Fc(0),
andDT5u0l 0 /d, and l 0 is the maximum scale of turbulen
motions,u0 is the characteristic velocity in this scale, andd
is the dimensionality of space. The functionFc(r ) describes
the potential component whereasF(r ) corresponds to the
vortical part of the turbulent velocity of particles.
id
t
f
-

id

s

e

We seek a solution to the equation forF without the
external sourceI in the form

F~ t,r !5C~r !r ~12d!/2expF2E
0

r

x~x!dxGexp~gt !. ~6!

Substituting Eq.~6! into Eq. ~2! yields an equation for un-
known functionC(r ):

1

m~r !
C92@g1U0~r !#C50, ~7!

where

U0~r !5
1

m~r ! Fd21

r
x1x21x81

~d21!~d23!

4r 2 G2k~r !,

~8!

1

m~r !
5

2

Pe
1

2

d
@12F2~rF c!8#, ~9!

x~r !5m~r !@~3d11!Fc82F812rF c9!/d, ~10!

k~r !522@~d221!Fc8/r 1~2d11!Fc91rF c-#/d, ~11!

and distancer is measured in units ofl 0 , time t is measured
in units of t05 l 0 /u0 , and Pe5 l 0u0 /D@1 is the Pe´clet
number.

Now we discuss the above model of a random veloc
field of inertial particles. Consider a case whentn!tp
!t0 , and the particle radiusa* ! l n , wheretn is the corre-
lation time in the viscous dissipation scalel n of a fluid flow.
The viscous scale isl n;Re21/(32p), where Re5 l 0u0 /n0
@1 is the Reynolds number,n0 is the kinematic viscosity of
the fluid, andp is the exponent in the spectrum of the turb
lent kinetic energy of fluid. Consider the case when the m
terial densityrp of particles is much larger than the densityr
of fluid. Introduce a scaler a in which tp5t(r 5r a), where
l n!r a!1, andt(r ) is the correlation time of the turbulen
fluid velocity field in the scaler . In the ranger a!r ,1 the
effect of inertia of particles is very small and particles velo
ity is close to the fluid velocity. In this caseF512r q21

1O(tp
2/t0

2) and Fc5O(tp
2/t0

2), whereq52p21,3. Note
that the exponentp in the spectrum of kinetic turbulent en
ergy is different from that of the function̂tumun& due to the
scale dependence of the momentum relaxation timet of tur-
bulent velocity of fluid@10#. Thus in the scalesr a!r ,1 the
effects of compressibility of the particles velocity field
negligible.

On the other hand, in scalesl n!r ,r a the effect of inertia
is important so that¹¢ –UÞ0. In these scales incompressib
F(r ) and compressibleFc(r ) components of the turbulen
velocity field of particles can be chosen asF(r )
5(12«)(12r q21), andFc(r )5«(12r q21). We take into
account that in the equation of motion for particlesdU/dt
5(v2U)/tp the last termuU/tpu!udU/dtu in the scalesl n

!r ,r a . In this case the equation of motion for particle
coincides with the Navier-Stokes equation for fluid in t
inertial range~where the viscous term is dropped out! except
for the term}¹¢ P. In the latter equation for particle motio
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the termv/tp can be interpreted as a stirring force. Thus
this case it is plausible to suggest that the exponent in
spectrum of the second moment of particle velocity co
cides with that of the turbulent fluid velocity. Howeve
u¹¢ –Uu}u¹¢ •@(U–¹¢ )U#uÞ0.

In scales 0!r , l n incompressibleF(r ) and compressible
Fc(r ) components of the turbulent velocity field of particl
are given by F(r )5(12«)(12ar 2), and Fc(r )5«(1
2ar 2), wherea5Re(32q)/(32p).

We consider the case of large Schmidt numbers,
5n/D@1. This condition is always satisfied for Brownia
particles. The solution of Eq.~7! can be obtained using a
asymptotic analysis~see, e.g.,@3,8–10,17,23#!. This analysis
is based on the separation of scales. In particular, the s
tion of the Schro¨dinger equation~7! with a variable mass ha
different regions where the form of the potentialU0(r ),
massm(r ) and, therefore, eigenfunctionsC(r ) are different.
The functionsF and F8 in these different regions can b
matched at their boundaries. Note that the most impor
part of the solution is localized in small scales~i.e., r !1).
The results obtained by this asymptotic analysis are p
sented below. Consider three-dimensional turbulent fl
flow (d53). The solution of Eq.~7! has several characte
istic regions. In region I, i.e., for 0<r ! l n the functionx5
2l1am(r )r and k520as/(11s) and 1/m52(1
1X2)/Pe, wherel152(12s21)/3(11s), and the param-
eter of compressibilitys5«/(12«). Using these functions
and Eqs.~6!–~8! we get formulas for the potentialU0(r ) and
the functionsC(r ) andF(r ),

U0;2abmF z~z11!1
12m2

11X2G ,

~12!

C5~11X2!1/2S~X!, F~r !5
1

X
~11X2!m/2S~X!,

whereX5(abmPe)1/2r , S(X)5Re$A1Pz
m( iX)1A2Qz

m( iX)%
is a real part of the complex function,Pz

m(Z) andQz
m(Z) are

the Legendre functions with imaginary argumentZ5 iX,
bm5(113s)/3(11s), and

m515s/~113s!, ~13!

z~z11!5m225m12. ~14!

Condition F(r 50)5const yields the ratioA1 /A2 . The
correlation function has a global maximum atr 50 and
therefore it satisfies the conditions:F8(r 50)50, and
F9(r 50),0, and F(r 50).uF(r .0)u. The function F
for X!1 @i.e., for 0<r !(aPe)21/2] is given by

F;B1H 12
m

3 FX22
~32z2m!~41z2m!

20
X41O~X6!G J ,

~15!

whereB1;A2 and we use Eqs.~13! and~14!. It follows from
Eq. ~15! that for the incompressible velocity fields50 ~i.e.,
m50) the correlation functionF5B15 constant. The same
result follows from the solution of Eq.~2! for b50 ~i.e., s
50):
e
-

c

lu-

nt

e-
d

F5B11B2E @m~r !/r 2#dr. ~16!

The integral in Eq.~16! has a singularity atr 50, and there-
fore a unique nonsingular solution for the correlation fun
tion F(r ) for incompressible velocity field is a trivial solu
tion F5B1 ~i.e., B250). On the other hand, whens5” 0
there is no singularity in the functionF(r ).

Now we consider an asymptotic solution of Eq.~7! for
X@1 @i.e., for (aPe)21/2!r ! l n]. A form of the solution
depends on the parameterz52@16(4m2220m19)1/2#/2.
Whens.1/27 ~i.e., m.1/2) the parameterz521/26 i z i is
a complex number, and the correlation function is given

F5AXm23/2 cos~z i ln r 1w0!, ~17!

where z i5u4m2220m19u1/2/2. This solution is valid for
1/27,s,1/7 ~i.e., 1/2,m,3/2). The parametersA andw0
are determined by the coefficientsA1 and A2 . When s
,1/27 ~i.e., m,1/2) the parameterz521/26z i is a real
number, and the correlation function is given by

F5AX2~3/22m2z i !,

where 3/22m2z i,0 and for smalls the exponent 3/22m
2z i;10s.

In region II, i.e., for l n<r !r a the functionx52l2 /r ,
k52sq(q21)(q12)r q23/3(11s), and 1/m52br q21,
where l25(q21)B(q,s)/2(11qs), B(q,s)52s(q13)
21, andb5(11qs)/3(11s). Using these functions and
Eq. ~8! we calculate the potentialU0(r ),

U0;2
114c2

4mr2
,

where c5AM (q,s)/2(q13)(11qs), M (q,s)5b1B2

1b2B1b3 , b1(q)528q317q2136q236, b2(q)52(8q4

126q3117q2224q236), andb3(q)53(4q4112q323q2

228q212). Note thatM (s50)524q2(q13)2. The solu-
tion of Eq. ~7! in this region depends on the parameter
compressibilitys. Whens is in the range:s1,s,s2 , the
functionsC(r ) andF(r ) are given by

C5A3r 1/2cos~c ln r 1w1!, F~r !5C/r a11/2, ~18!

where a5@q2s(2q213q26)#/2(11qs), and s i5(Bi
11)/2(q13), andBi are the roots of the equationM50.
When 0,s,s1 the functionsC(r ) andF(r ) are given by

C5r 1/2~A3r ucu1A4r 2ucu!, F~r !5C/r a11/2. ~19!

In region III r a!r !1 the functionx52l3 /r , k50, and
1/m52r q21/3, where l352(q21)/2. Using these func-
tions and Eqs.~6!–~8! we get formulas for the potentia
U0(r ) and the functionsC(r ) andF(r ),

U0;
q221

4mr2
,

~20!
C5r 1/2~A5r q/21A6r 2q/2!, F~r !5A51A6r 2q,
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When r a, l n ~i.e., Re,1/r a
32p) region II vanishes and the

solution ~17! for 0,r , l n borders on the solution~20! for
l n,r ,1.

In large scales, i.e.,r @1, functionsF(r ) andFc(r ) tend
to zero and, therefore 1/m(r )→2/3 andU0→0. The correla-
tion function in this range is given by F(r )
5A7r 21exp(2rA3ugu/2), ParametersAk ,w1 and the growth
rate of fluctuationsg are determined by matching function
F(r ) at the boundaries of these regions. In particular,
growth rate of fluctuations of particles concentration is giv
by

g5
2@c21~q2a!2#2

3q4~32p!2r a
2q

ln2S Re

Re~cr!D , ~21!

where r a5(tp /t0)1/(p21), Re.Re(cr), and for the critical
Reynolds number Re(cr),

Re~cr!.r a
p23expF32p

c S pk1arctan
q2a

c

1arctan
3/22m2a1c* z i

c D G , ~22!

where k51,2,3, . . . andc* 5tan(z i ln ln1w0). Therefore,
the fluctuations of particle concentration can be excited w
out an external source.

The divergent velocity field of inertial particles is th
main reason for the self-excitation~exponential growth! of
fluctuations of a concentration of small particles in a turb
lent fluid flow. Indeed, multiplication of Eq.~1! by np and
simple manipulations yield

]np
2

]t
1~“W •S!52np

2~“W •U!22D~“W np!2, ~23!

whereS5np
2U2D“

W np
2 . The latter equation implies that i

“
W
•U,0, a perturbation of the equilibrium homogeneous d

tribution of inertial particles can grow in time, i.e
(]/]t)*np

2d3r .0. However, the total number of particles
conserved. Averaging Eq.~23! over a volumeV* we obtain

]^np
2&

]t
;2^np

2~“W •U!&22D^~“W np!2&. ~24!

Here we used*(“W •S)dV* 5*S•dA!*np
2(“W •U)dV* , and

A is a closed surface. Equation~24! implies that the variation
of particle concentration during the time intervalt0

5 l 0 /u0 , around the valuenp
(0) is of the order of dnp

;2np
(0)t0(“W •U), whereu0 is the characteristic velocity in

the energy containing scalel 0 . Substitutingnp5np
(0)1dnp

into Eq. ~24! yields ]^np
2&/]t;2t0^np

2(“W •U)2&. Therefore,
the growth rate of fluctuations of particles concentrationg

;2t0^(“W •U)2&. This estimate in a good agreement with t
analytical results obtained above.

The physics of self-excitation~exponential growth! of
fluctuations of particle concentration is as follows. The in
tia causes particles inside the turbulent eddy to drift ou
the boundary regions between eddies~the regions with maxi-
e
n

-

-

-

-
o

mum pressure of the fluid!. Indeed, Eq.~4! shows that par-
ticles inertia results in¹¢ •U}tpDP/r. On the other hand, for
large Pe´clet numbers¹¢ •U}2dnp /dt @see Eq.~1!#. There-
fore, dnp /dt}2tpDP/r. Thus there is accumulation of in
ertial particles~i.e., dnp /dt.0) in regions with the maxi-
mum pressure of a turbulent fluid~i.e., where DP,0).
Similarly, there is an outflow of inertial particles from th
regions with the minimum pressure of fluid.

This mechanism acts in a wide range of scales of a tur
lent fluid flow. Turbulent diffusion results in relaxation o
fluctuations of particle concentration in large scales. Ho
ever, in small scales where turbulent diffusion is small,
relaxation of fluctuations of particle concentration is ve
weak. Therefore the fluctuations of particle concentration
localized in the small scales.

This phenomenon is considered for the case when den
of fluid is much less than the material density of partic
(r!rp). When r>rp the results coincide with those ob
tained for the case (r!rp) except for the transformation
tp→b* tp . For r>rp the value dnp /dt}2b* tpDP/r.
Thus there is accumulation of inertial particles~i.e., dnp /dt
.0) in regions with the minimum pressure of a turbule
fluid sinceb* ,0.

III. ANOMALOUS SCALING FOR FLUCTUATIONS
OF PARTICLES CONCENTRATION

Problems of anomalous scalings for vector~magnetic! and
scalar~particles number density or temperature! fields pas-
sively advected by a turbulent fluid flow are a subject of
active research in the last years~see, e.g.,@10–15,18#!. For
an incompressible turbulent flow and whenU5v the anoma-
lous scalings for scalar field can occur only beginning with
fourth-order correlation function~see e.g.,@12–14#!. In this
section we show that the anomalous scaling appears alr
in the second moment of the number density of partic
when the degree of compressibilitys.1/27.

We study the case when there is no self-excitation of
fluctuations of the number density of inertial particles, i.
the case when Re,Re(cr). Consider fluctuations of inertia
particle concentration in the presence of a sourceI (r ) and
we study a zero mode for Eq.~2!, i.e., the mode withg
50. Substituting Eq.~6! in Eq. ~2! yields an equation for the
unknown functionc(t,r ),

]c

]t
5

1

m

]2c

]r 2
2U0~r !c1 f̃ ~r !, ~25!

where f̃ (r )5rI (r )exp@*0
rx(x)dx#. Determine the stationary

solution of Eq.~25!. The external source in these scales
chosen as follows:I (r )5I 0(12r s), wheres.0, and forr
.1, I (r )50. The general solution of Eq.~25! reads

c~r !5AC11BC21E
0

`

G~r ,j! f̃ ~j!dj, ~26!

whereC1 and C2 are solutions of Eq.~25! with I 50, and
Green functionG(r ,j) is given by
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G~r ,j!5m~j!H~r 2j!
C1~r !C2~j!2C2~r !C1~j!

C1~j!C28~j!2C2~j!C18~j!
,

and H(y) is a Heaviside function. Equation~26! yields the
formula for the second momentF(r ) in different regions.
When l n<r ,r a

F5r 2a~A3r ucu1A4r 2ucu!2
I 0

2bm@~32q1a!22c2#
r 32q

@for 1/27,s,min(s1,1/7)], and

F5A3r 2acos~c ln r 1w1!2
I 0

2bm@~32q1a!21c2#
r 32q

~for s1,s,1/7). Whenr a,r !1

F~r !5A51A6r 2q2
I 0

2~32q!
r 32q,

and whenr @1 the functionF(r )5A7 /r . Matching func-
tions F(r ) and F8(r ) at the boundaries of these regio
yields the constantAk . The term}r 32q in these equations
corresponds to a normal scaling for the second momen
inertial particles concentration, whereas the term}r 2q in the
ranger a,r !1 corresponds to the anomalous scaling. Wh
s1,s,1/7 the anomalous scaling in the rangel n<r ,r a is
complex (}r 2a6 i ucu).

IV. EFFECT OF CHEMICAL REACTIONS „OR PHASE
TRANSITIONS … ON SELF-EXCITATION

AND ANOMALOUS SCALING OF FLUCTUATIONS
OF PARTICLES NUMBER DENSITY

Now we study fluctuations of the number density of sm
particles in a turbulent fluid flow with chemical reactions~or
heterogeneous phase transitions, e.g., evaporation or con
sation!. The source of particles~or droplets! is I c . Consider
a homogeneous equilibrium withI c50. Now we study de-
viation from this equilibrium. Linearizing Eq.~1! with the
sourceI c for the number density of small particles in th
vicinity of the equilibrium we obtain an equation for sma
perturbations,

]np

]t
1¹¢ •~npU!5DDnp2~t0 /tc!np ~27!

~see@24#!, wheret0 /tc52]I c /]np , and tc is the charac-
teristic time of chemical reaction~or phase transition!. Equa-
tion for the second moment of the number density of p
ticles coincides with Eq. ~2! except for the change
^tb(x)b(y)&→^tb(x)b(y)&2t0 /tc . In this case all equa
tions ~6!–~11! are not changed except for the changeU0
→U01t0 /tc . Therefore in this case we can use the sa
analysis that is performed in Secs. II and III. Indeed, co
sider a solution of the equation for the second moment of
number density of particles. In region I, 0,r , l n , a nonsin-
gular solution for the correlation function exists only for
compressible fluid flow whens.1/27 and Re.Re* , where
Re* 5(t0 /tc)

(32p)/(32q) @see the comments after Eqs.~15!
of

n

l

en-

-

e
-
e

and~16!#. The condition Re.Re* means that the solution i
independent of the chemical reactions~or phase transitions!.
This solution coincides with that given by Eq.~12!. On the
other hand, for an incompressible fluid flow (s50) with
chemical reactions~or phase transitions! and without an ex-
ternal pumping only a solution with (]F/]r ) r→0.0 exists
for small but finite molecular diffusion. This solution cann
be a correlation function.

Consider a solution for the second moment of the num
density of particles in the region II,l n,r ,r c,r a , where
the scaler c5(tc /t0)1/(32q) is determined by the condition
1/(mr2);t0 /tc , i.e., when the effect of chemical reaction
~or phase transitions! is essential. When 1/mr2!t0 /tc , the
function C is determined by an equationr q21C9
2(t0 /tcb)C50. The solution of this equation is given by

C5A3r 1/2K1/~32q!S 2

32q
A t0

tcb
r ~32q!/2D

;r ~q21!/4expS 2
2

32q
A t0

tcb
r ~32q!/2D , F5C/r a11/2,

~28!

whereKn(y) is the modified Bessel function of the secon
type. SinceAt0 /tcbr (32q)/2!1 the effect of chemical reac
tions ~or phase transitions! causes strong localization of th
solution given by Eq.~28! in the scalesr>r c . When l n,r
!r c the effect of chemical reactions~or phase transitions! is
negligible and the correlation functionF is given by Eq.~18!
which is valid for max(s1 ,1/27),s,s2 ~see Sec. II!. The
latter solution determines the self-excitation of fluctuatio
of particles number density when Re.Re(cr), and the com-
plex anomalous scaling when Re,Re(cr) ~see Secs. II and
III !. Solutions~18! and ~28! are matched in the vicinityr
;r c . This means that in the case of chemical reactions~or
phase transitions! there is a possibility for both, the self
excitation of fluctuations of the particles number dens
when Re.Re(cr), and for the complex anomalous scalin
when Re,Re(cr) and if there is an external pumping.

On the other hand, solution~28! with its first derivative
cannot be matched with that given by Eq.~19!. The latter
solution is valid for 1/27,s,s1 and determines the rea
anomalous scaling. Consider the caser a,r c!1. The effect
of chemical reactions~or phase transitions! is essential for
r>r c and the solution for the second-order correlation fun
tion F of the particles number density is given by Eq.~28!
with b52/3. Whenr a,r !r c the correlation functionF is
determined by Eq.~20!. These two solutions with their firs
derivatives cannot be matched. Solution~20! determines also
the real anomalous scaling. This means that in the cas
chemical reactions~or phase transitions! the real anomalous
scaling does not exist.

Remarkably, chemical reactions~or phase transitions! do
not affect the threshold Re(cr) for self-excitation of fluctua-
tions of the particles number density and the comp
anomalous scaling of the fluctuations. Chemical reactions~or
phase transitions! in the caser a.r c only cause strong local
ization of solution for the second-order correlation functi
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F in the vicinity of r;r c . Note also that whentc<t0 ~i.e.,
r c.1) the effect of chemical reactions~or phase transitions!
is negligible.

The physics of the effect of strong localization of fluctu
tions due to chemical reactions~or phase transitions! can be
illucidated using an example of the simple irreversib
chemical reactionA→C. During transport of an admixtureA
by a turbulent fluid flow the number density of the admixtu
A decreases due to the chemical reactionA→C with a very
short timetc!t0 . Thus turbulent diffusion does not contrib
ute to the mass flux of a reagentA. Turbulent mixing is
effective only for the productC of the reaction. The situation
becomes more complicated for a multicomponent chem
reaction with the inverse reaction. The effect of depletion
the turbulent diffusion is similar to that for the reactionA
→C. The total chemical relaxation timetc is determined by
an equationtc

215( j 51
k t̃ j

21 , wheret̃ j is the relaxation time
of the j component. The components with timet i@tc have
the turbulent diffusion coefficient;DT , whereas turbulen
diffusion coefficients for the components witht i;tc are
strongly reduced~for details see@24#!. This effect of strong
depletion of turbulent diffusion can be interpreted as stro
localization of the fluctuations of particle number density

V. TURBULENT FLUX OF PARTICLES

Now we study the large-scale dynamics of inertial p
ticles. The evolution of the number densitynp(t,r ) of small
particles in a turbulent flow is determined by the equatio

]np

]t
1¹¢ •~npU!52“

W
•JM , ~29!

where the flux of particlesJM is given by JM52D@“W np

1kt“
W Tf /Tf1kp“

W Pf /Pf #. The first term in the formula for
the flux of particles describes molecular diffusion, while t
second term accounts for the flux of particles caused by
temperature gradient“W Tf ~molecular thermal diffusion for
gases or thermophoresis for particles, see, e.g.,@25#!, and the
third term determines the flux of particles caused by the p
sure gradient¹¢ Pf ~molecular barodiffusion!. Herekt}np is
the thermal diffusion ratio,Dkt is the coefficient of therma
diffusion, kp}np is the barodiffusion ratio,Dkp is the coef-
ficient of barodiffusion, andTf and Pf are the temperature
and pressure of surrounding fluid, respectively.

We consider here the case of large Reynolds and Pe´clet
numbers and do not take into account the effect of partic
upon the carrying fluid flow. The solution of the equation
motion for small particles withrp@r yields

U5v~ t,Y~ t !!2tp@]v/]t1~v–¹¢ !v#1O~tp
2!, ~30!

~see, e.g.,@20#!, wherev is the velocity of the surrounding
fluid, Y(t) is the position of the particle,rp is the material
density of particles, andr is the density of the fluid.

In this study we consider a low-Mach-number compre
ible turbulent flow¹¢ –vÞ0. The velocity field of particles is
also compressible, i.e.,¹¢ –UÞ0. Equation~30! for the veloc-
ity of particles and Navier-Stokes equation for the fluid f
large Reynolds numbers yields
al
f

g

-

e

s-

s
f

-

¹¢ –U5¹¢ –v2tp¹¢ •~dv/dt!1O~tp
2!

5¹¢ –v1tp¹¢ •~¹¢ Pf /r!1O~tp
2!. ~31!

We study the large-scale dynamics of small inertial p
ticles and average Eq.~29! over an ensemble of random ve
locity fluctuations. For this purpose we use the method
path integrals. The equation for the mean fieldN5^np& is

]N

]t
1“

W
•@NVeff2D̂“

W
mN#50 ~32!

~see Appendix A!, where D̂[Dpmand Veff5Vp2^tbu&.
Equation~32! was derived for Pe@1. It can be shown tha
for Pe!1 and arbitrary velocity field the equation for th
mean field coincides with Eq.~32!.

Now we calculate the velocityVeff . Using the equation of
state Pf5kBTfr/mm and Eq. ~31! we obtain ^tub&
'^t(“W •ũ)ũ&1(tpvT

2/T* )^tũDu&, where vT
25kBT* /

mm ,mm is the mass of molecules of surrounding fluid a
Tf(t,r ) is the temperature field with a characteristic val
T* , u are fluctuations of temperature,kB is Boltzmann con-
stant. We neglect here the second moments;^ũr̃&, since the
mean turbulent mass flux of the surrounding fluid vanishe
a finite domain surrounded by solid boundaries. Herer̃ andũ
are fluctuations of the density and velocity of the fluid. O
the other hand, the mean turbulent heat flux^ũ(x)u(x)& is
nonzero in the presence of an external mean tempera
gradient, i.e.,^ũ(x)u(x)&52xT“

W T, where the total tem-
perature isTf5T1u,T5^Tf& is the mean temperature field
xT;u0l 0 /3 is the coefficient of turbulent thermal diffusivity
Therefore, the effective velocity is given by

Veff5Vp2^t~“W •ũ!ũ&2
l 0u0

Pe S mp

mm
D ln~Re* !“W T,

where Re* 5Re F0
1/2,Re5 l 0u0 /max(n0 ,x0) is the Reynolds

number,x0 is the coefficient of molecular thermal condu
tivity, and F0(r )5^ũ2(r )&/u0

2 . We use here an identity

tpvT
2

l 0u0
5

1

PeS mp

mm
D ,

and Pe5u0l 0 /D* is the Pe´clet number and the molecula
diffusion coefficientD* 5kT* /(6pa* rn).

Equation~32! with this effective velocityVeff can be re-
written in the form

]N

]t
1“

W
•~NVp!52“

W
•~JT1JM !, ~33!

where

JT52DTFkT

T
“
W T2

kP

P
“
W P1F0“

W NG , ~34!

kT5N@F01T~h01s0f !#, ~35!

h05
3

PeS mp

mm
D S 1

T*
D ln Re, ~36!
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where s05h0 /(2ln Re),f 5 ln F0, and DT5u0l 0 /3 is the
coefficient of turbulent diffusion,kT can be interpreted as th
turbulent thermal diffusion ratio, andDTkT is the coefficient
of turbulent thermal diffusion;kP5F0N can be interpreted
as the turbulent barodiffusion ratio andDTkP is the coeffi-
cient of turbulent barodiffusion. Note that for Re@1 and
Pe@1 both turbulent diffusion coefficients are much larg
than the corresponding molecular coefficients~i.e., DT@D,
andDTkT@Dkt), andDTkP@Dkp. Using Eq.~30! the par-
ticle mean velocity can be written in the form

~Vp! i5V i2tp

]V i

]t
2tp

]

]xj
^uiuj&1tp^ujb&. ~37!

Taking into account Eq.~37! the turbulent flux of particles
JT* in isotropic turbulence is given by

JT* 5JT2
tp

3
“
W ^u2&, ~38!

whereJT is determined by Eq.~34! and

kT5NFF0S 11
tp

t0
D1T~h01s0f !G ,

kP5NF0S 11
tp

t0
D .

The second term in Eq.~38! describes the effect of turbo
phoresis~see@26,27#!.

Compressibility of the background fluid is importa
when the size of particles smaller than one micrometer~or
for the gaseous admixture!. In this case the effect of particl
inertia is very small and the main contribution to the effect
the turbulent thermal diffusion is due to the compressibi
of the background fluid. On the other hand, when the size
particles is larger than 5–10mm the effect of particles inertia
is very important and the contribution to the effect of t
turbulent thermal diffusion caused by particles inertia
much larger than that due to compressibility of the ba
ground fluid@i.e.,T(h01s0f )!F0 , see Eq.~35!#. Certainly,
the compressibility (“–vÞ0) of the background fluid canno
be ignored completely since otherwise we cannot satisfy
continuity equation and the equation of state simultaneou
in the presence of a nonzero mean temperature gradien

VI. LARGE-SCALE INSTABILITY

Let us study the large-scale dynamics. The equilibri
solution of Eq.~33! can be unstable. The mechanism of t
instability for rp@r is as follows. The inertia causes pa
ticles inside the turbulent eddy to drift out to the bounda
regions between eddies~the regions with decreased veloci
of the turbulent fluid flow and maximum of pressure of t
surrounding fluid!. Thus, inertial particles are accumulated
regions with the maximum pressure of the turbulent flu
Indeed, the inertia effect results in¹¢ –U}tpDPfÞ0. On the
other hand, for large Peclet numbers¹¢ –U}2dnp /dt. The
latter implies that in regions with the maximum pressure
turbulent fluid~i.e., whereDPf,0) there is an accumulatio
of inertial particles~i.e., dnp /dt.0). Similarly, there is an
r

f

f

-

e
ly

.

f

outflow of inertial particles from regions with the minimum
pressure of fluid. In a homogeneous and isotropic turbule
without large-scale external gradients of temperature a d
from regions with increased~decreased! concentration of in-
ertial particles by a turbulent flow of fluid is equiprobable
all directions. Therefore the pressure~temperature! of the
surrounding fluid is not correlated with the turbulent veloc
field and there exists only a turbulent diffusion flux of ine
tial particles.

The situation is drastically changed when there is a lar
scale inhomogeneity of the temperature of the turbulent flo
In this case the mean heat flux^ũu&Þ0. Therefore fluctua-
tions of both temperature and velocity of fluid are correlat
Fluctuations of temperature cause fluctuations of the pres
of the fluid. The pressure fluctuations result in fluctuations
the concentration of inertial particles. Indeed, an incre
~decrease! of the pressure of the surrounding fluid is acco
panied by accumulation~outflow! of the particles. Therefore
the direction of the mean flux of particles coincides with th
of the heat flux, i.e.,̂ ũnp&}^ũu&}2“

W T. The mean flux of
the inertial particles is directed to the minimum of the me
temperature and the inertial particles are accumulated in
region.

The evolution of the mean fieldN is determined by Eq.
~33!. Substitution

N~ t,r !5N* C0~Z!exp~g0t !expF2
1

2E x0~Z!dZ1 ik–r'G
1N0~r !

reduces Eq.~33! to the eigenvalue problem for the Schr¨-
dinger equation,

1

m0
C09~Z!1@W02U0~Z!#C0~Z!50, ~39!

whereW052g0 , A85dA/dZ, and the potentialU0 is given
by

U05
1

m0
S x0

2

4
1

x08

2
1k0D ,

and

x05 f 81
T8

T
2

P8

P
1

1

F0
~h01s0f !T8,

k05k22S T8

T D 8
1S P8

P D 8
1

f 8P8

P
2

1

F0
~h01s0f !T9

2
f 8T8

T S 11
s0T

F0
D .

Herem05exp@2f(Z)#, the axisZ is directed along the mea
temperature gradient, and the wave vectork is normal to the
axis Z. In deriving Eq.~39! we take into account that for a
isotropic turbulence^um(x)un(x)&5u0

2 exp(f)dmn/3. Equi-
librium distribution of the mean number densityN0(r ) is
determined by equationD̂“

W
mN05VeffN0 . Equation~39! is

written in the dimensionless form, the coordinate is me
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sured in unitsLT , time t is measured in unitsLT
2/DT , the

wave numberk is measured in unitsLT
21 , the temperatureT

is measured in units of temperature differencedT in the scale
LT , and concentrationN is measured in unitsN* .

Now we use a quantum mechanical analogy for the an
sis of the large-scale pattern formation in the concentra
field N of the inertial particles. The instability can be excite
(g0.0) if there is a region of a potential well whereU0
,0. The positive value ofW0 corresponds to the turbulen
diffusion, whereas a negative value ofW0 results in the ex-
citation of the instability. Consider the caseP8/P!T8/T.
The potentialU0 can be rewritten as

U05
1

4m0
F S f 82

T8

T D 2

1S T8

T
2

s0T f8

F0
D 2

1FT8

T
1

1

F0
~h01s0f !T8G2

14k212 f 9

22
T9

T
2

2

F0
~h01s0f !T92S s0T f8

F0
D 2G . ~40!

The potentialU0 can be negative if

2 f 922
T9

T
2

2

F0
~h01s0f !T92S s0T f8

F0
D 2

,0. ~41!

In order to estimate the first energy levelW0 we use a
modified variational method~e.g., a modified Rayleigh-Ritz
method!. The modification of the regular variational metho
is required since Eq.~39! can be regarded as the Schro¨dinger
equation with a variable massm0(Z). Now we rewrite Eq.
~39! in the form

ĤC05W0C0 , Ĥ5U02
1

m0

d2

dZ2
. ~42!

The modified variational method employs an inequality

W0<I , I 5E m0C* ĤCdZ, ~43!

whereC is an arbitrary function that satisfies a normaliz
tion condition

E m0C* CdZ51. ~44!

The inequality ~43! can be proved if one uses the e
pansion C5(p50

` apC0
(p) , where (p50

` uap
2u51 and

*m0(C0
(p))* C0

(k)dZ5dpk. The eigenfunctionsC0
(p) satisfy

the equationĤC0
(p)5WpC0

(p) .
We chose the trial functionC in the form

C5A0 exp@2a0~Z2Z0!2/2#, A0

5S a01b0

p D 1/4

expS a0b0Z0
2

2~a01b0!
D , ~45!
y-
n

-

where the unknown parametersa0 andZ0 can be found from
the condition of the minimum of the functionI (a0 ,Z0) @see
Eq. ~43!#. Here we use the following spatial distributions
f (Z) andT(Z):

f ~Z!52b0Z2 exp~2b0Z2!, ~46!

T~Z!5~T* 1Z21aZ!exp~2e0Z2!, ~47!

whereb0!1 ande0!1. These distributions satisfy the ne
essary condition~41! for the excitation of the instability. We
consider a caseT

*
21!b0 .

Substituting Eqs.~45! and ~47! into Eq. ~43! yields

I 52h01
1

2a0
3/2$a0

2~a02b0!1/2

1b0~a01b0!1/2@b012a0~b0Z0
221!#%

3expS 2
a0b0Z0

2

a02b0
D 1h0

2 ~a02b0!1/2

4~a022b0!5/2
@2~a022b0!

1„2a0Z01a~a022b0!…2#expS a0
2b0Z0

2

~a02b0!~a022b0!
D .

~48!

Here we consider the case ofk!1. This implies long-wave
perturbations in the horizontal plane. Thus, the modifi
Rayleigh-Ritz method allows us to estimate the growth r
of the instability. For example, whenb0!h0 ~i.e., the inho-
mogeneity of turbulence is not strong!, the growth rate of the
instability in the dimensional form is given by

g>
3b0DT

2LT
2

. ~49!

Thus, it is shown here that the equilibrium distribution of t
number density of particles is unstable. The instability resu
in the formation of an inhomogeneous distribution of t
number density of particles. The exponential growth dur
the linear stage of the instability can be damped by the n
linear effects~e.g., hydrodynamic interaction between pa
ticles and a turbulent fluid flow, a change of temperatu
distribution in the vicinity of the temperature inversio
layer!. The obtained estimate of the growth rate of the ins
bility is in agreement with the numerical solution of Eq.~39!.

VII. CONCLUSIONS

Fluctuations of the number density of inertial particles
a turbulent fluid flow are investigated. It is shown that t
anomalous scaling appears already in the second mome
the number density of inertial particles when the degree
compressibility of the particles velocitys.1/27. It is dem-
onstrated that the inertia of particles in a homogeneous
isotropic turbulent fluid flow causes a self-excitation~expo-
nential growth! of fluctuations of particle concentration. Th
growth rates of the higher moments of particle concentrat
is larger than those of the lower moments, i.e., particles s
tial distribution is intermittent. This process can be damp
by the nonlinear effects~e.g., two-way coupling between
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fluctuations of particles concentration and turbulent flu
flow!. Note that when the particles velocity field is dive
gence free, i.e.,¹¢ –U50, all of the moments of the concen
tration field do not grow and there is no intermittency wit
out an external source of fluctuations of partic
concentration. When the inertia effect is negligible~e.g., for
small size of particles or gaseous admixture! but the fluid
velocity field is divergent, i.e.,¹¢ –uÞ0, the moments of the
concentration field grow and there is intermittency witho
an external source of fluctuations of particle concentrati
In this case Eqs.~21! and ~22! with r a51 determine the
growth rate of fluctuations of particle concentration and
critical Reynolds number, respectively. Thed-correlated in
time random process is used to describe a turbulent velo
field. However, the results remain valid also for the veloc
field with a finite correlation time, if all moments of th
number density of the particles vary slowly in comparis
with the correlation time of the turbulent velocity field.

The analyzed effect of self-excitation~exponential
growth! of fluctuations of particles concentration is impo
tant in turbulent fluid flows of a different nature with inerti
particles or droplets~e.g., in atmospheric turbulence, com
bustion, and in laboratory turbulence!. In particular, this ef-
fect causes formation of inhomogeneities in spatial distri
tion of fuel droplets in internal combustion engines. The se
excitation of fluctuations of particle concentration
observed in atmospheric turbulence, e.g., this effect ca
formation of small-scale inhomogeneities in droplet clou
@5,6#. Small-scale inhomogeneities in the spatial distribut
of inertial particles were observed also in laboratory@4#.

Large-scale dynamics of inertial particles advected b
low-Mach-number compressible turbulent fluid flow with
nonzero mean temperature gradient is studied as well.
equation for the turbulent flux of particles in a low-Mac
number compressible fluid flow is derived. A modifie
Rayleigh-Ritz variational method is used for the analysis
the large-scale instability that results in formation of larg
scale inhomogeneous structures in the spatial distributio
inertial particles. Note that the large-scale instability can
also interpreted as an inverse cascade of the passive s
~e.g., particles, number density!.
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APPENDIX: DERIVATION OF EQUATIONS FOR THE
MEAN FIELD AND THE SECOND-ORDER

CORRELATION FUNCTION FOR THE NUMBER
DENSITY OF PARTICLES

We study the fluctuations and large-scale dynamics
small inertial particles and average Eq.~1! over an ensemble
of random velocity fluctuations. For this purpose we use
method of path integrals whereby the solution of Eq.~1! is
reduced to an analysis of the evolution of the concentra
field np(t,r ) along the Wiener pathjW :
t
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j¢~ t,t0!5x2E
0

t2t0
U@ ts ,j¢~ t,ts!#ds1~2D !1/2w~ t2t0!,

~A1!

whereU5vp , ts5t2s, andw(t) is a Wiener process. Equa
tion ~A1! describes a set of random trajectories that p
through the pointx at timet. The solution of Eq.~1! with the
initial condition np(t5t0 ,x)5n0(x) is given by the
Feynman-Kac formula

np~ t,x!5M $G~ t,t0!n0@j¢~ t,t0!#% ~A2!

~see, e.g.,@28#!, where

G~ t,t0!5expH 2E
t0

t

b* @s,jW~ t,s!#dsJ , ~A3!

b* [“
W
•U, andM $•% denotes the mathematical expectati

over the Wiener paths.
Now let us derive the equation for the mean fieldN

5^np& and for the second-order correlation functio
F(t,x,y)5^Q(t,x)Q(t,y)& for the number density of par
ticles using Eq.~1!, where Q5np2N. The procedure of
derivation is outlined in the following:

~i! If the total fieldnp is specified at instantt, then we can
determine the total fieldnp(t1Dt) at near instantt1Dt by
means of substitutionst→t1Dt and t0→t in Eq. ~A2!. The
result is given by

np~ t1Dt,x!5M $G~ t1Dt,t !np@ t,j¢~ t1Dt,t !#%, ~A4!

where

G~ t1Dt,t !5expF2E
t

t1Dt

b* ~s,j¢s!dsG ,
j¢~ t1Dt,t ![j¢Dt5x2E

0

Dt

U~ ts ,j¢s!ds1~2D !1/2w~Dt !,

ts5t1Dt2s, andj¢(t2 ,t1)[j¢t22t1
, i. e.,j¢s5j¢(t1Dt,ts).

~ii ! Expansion of the functionsnp(t,j¢Dt) and the velocity
Um(ts ,j¢s) in Taylor series in the vicinity of the pointx
allows us to express the fieldnp(t,j¢Dt) in terms of the field
np(t,x). Indeed, we expand functionnp(t,j¢Dt) @Eq. ~A4!# in
Taylor series in the vicinity of the pointx:

np~ t,j¢Dt!.np~ t,x!1
]np

]xm
~j¢Dt2x!m

1
1

2

]2np

]xm]xs
~j¢Dt2x!m~j¢Dt2x!s1•••.

~A5!

Using equation for the Wiener path we obtain

@j¢~ t2 ,t1!2x#m52E
0

t22t1
Um~ ts ,j¢s!ds

1~2D !1/2wm~ t22t1!, ~A6!
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wherej¢(t2 ,t22s)[j¢s . Expanding the velocityUm(ts ,j¢s) in
Taylor series in the vicinity of pointx and using Eq.~A6!
yields

Um~ ts ,j¢s!.Um~ ts ,x!2Ul

]Um

]xl
s

1~2D !1/2
]Um

]xl
wl~s!1•••. ~A7!

Substituting Eq.~A7! into Eq. ~A6! and calculating the inte
grals in Eq.~A6! accurate up to the terms;O@(t22t1)2#
yields

@j¢~ t2 ,t1!2x#m

.2~ t22t1!Um1 1
2 ~ t22t1!2Ul

]Um

]xl
2A2D

]Um

]xl

3E
0

t22t1
wlds1A2Dwm~ t22t1!1•••. ~A8!

Combination Eqs.~A8! and ~A5! yields the fieldnp(t,j¢Dt)

np~ t,j¢Dt!5np~ t,x!1
]np

]xm
F2UmDt1

1

2
Ul

]Um

]xl
~Dt !2

1A2Dwm2A2D
]Um

]xl
E

0

Dt

wldsG
1

1

2

]2np

]xm]xs
@UmUs~Dt !212Dwmws

2A2DDt~Umws1Uswm!#, ~A9!

Here we keep the terms up to>O@(Dt)2#.
~iii ! Now we expand the functionb* @s,j¢(t1Dt,s)# in

the Taylor series in the vicinity of pointx, and calculate the
integral

E
t

t1Dt

b* @s,j¢~ t1Dt,s!#ds.

The result is given by

E
t

t1Dt

b* ~s,j¢s!ds.b* ~ t,x!Dt2 1
2 Uq

]b*
]xq

~Dt !2

1A2D
]b*
]xq

E
T

T1Dt

wqds1•••.

~A10!

Here we also keep terms>O@(Dt)2#. Using Eq.~A10! we
calculate the function G(t1Dt,t) accurate up to
;O@(Dt)2#:
G~ t1Dt,t !.12b* ~ t,x!Dt1 1
2 Uq

]b*
]xq

~Dt !2

1 1
2 b

*
2 ~Dt !22A2D

]b*
]xq

E
t

t1Dt

wqds.

~A11!

~iv! Substituting Eq.~A11! and~A9! into Eq.~A4! allows
us to determine the number densitynp(t1Dt,x):

np~ t1Dt,x!5M H np~ t,x!1n1~Dt !

1n2~Dt !21D
]2np

]xm]xl
wmwsJ , ~A12!

where

n15Um

]np

]xm
2b* np ,

n25
]np

]xm
S 1

2
Ul

]Um

]xl
1b* UmD

1
1

2
npS Ul

]b*
]xl

1b
*
2 D1

1

2

]2np

]xm]xl
UmUl .

Note that the velocityU is determined by the turbulent ve
locity v of the surrounding fluid@see Eq.~30!#. In order to
determine the mean fieldN we average Eq.~A12! for the
number densitynp(t1Dt,x) over the turbulent velocityU,
~i.e. N5^n&). Note thatU5Vp1u, whereVp5^U& is the
mean velocity andu is the random component of the veloci
of particles. It is important to note that the Wiener rando
processw(t) and the turbulent velocityu(t,x) are indepen-
dent random processes, and therefore we can change th
der of averaging:̂M $ f %&→M $^ f &% ~see, e.g.,@8,9#!. On the
other hand, the random processesw(t) andu(t,j¢Dt) are cor-
related. We also assume that the velocitiesu in both intervals
(0,t) and (t,t1Dt) are independent, because we consider
random flow with a short time of renewal. Note that avera
ing over the Wiener paths corresponds to the averaging o
the molecular processes with very small characteristic sca
On the other hand,̂ f & determines the averaging over th
turbulent velocity field with scales that are larger than t
molecular ones.

~v! Now we calculate

N~ t1Dt,x!2N~ t,x!

Dt
,

and pass to the limitDt→0. HereN5^np&. The result is
given by

]N

]t
1@~V2^t~u•“W !u&22^tbu&!•“W #N

5BeffN1Dpm

]2N

]xp]xm
, ~A13!
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whereBeff52(“W •V)1^t(u•“W )b&1^tb2&. Using the iden-
tity

K tup

]

]xp
umL 5

]

]xp
^tupum&2^tu~“W –u!&

we obtain Eq.~32! for the mean number density of particle
~vi! Now we derive equation for the second-order cor

lation function for the number density of particles. Let
tt

tt

.

.

s

,

-

calculate the correlation functionF(t1Dt,x,y)5^Q(t
1Dt,x)Q(t1Dt,y)& by means of Eq.~A12!. The obtained
equation allows us to find the function

F~ t1Dt !2F~ t !

Dt
.

Passing to the limitDt→0 yields, Eq.~2! for the correlation
function F.
th.

.

tt.
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