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Anomalous scalings for fluctuations of inertial particles concentration and large-scale dynamics
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Small-scale fluctuations and mean-field dynamics of the number density of inertial particles in turbulent fluid
flow are studied. Anomalous scaling for the second-order correlation function of the number density of inertial
particles is found. The mechanism for the anomalous scaling is associated with the inertia of particles that
results in a divergent velocity field of particles. The anomalous scaling appears already in the second moment
when the degree of compressibiligy>1/27 (whereo is the ratio of the energies in the compressible and the
incompressible components of the particles velgcifyhe S-correlated in time random process is used to
describe a turbulent velocity field. However, the results remain valid also for the velocity field with a finite
correlation time, if all moments of the number density of the particles vary slowly in comparison with the
correlation time of the turbulent velocity field. The mechanism of formation of large-scale inhomogeneous
structures in spatial distribution of inertial particles advected by a low-Mach-number compressible turbulent
fluid flow with a nonzero mean temperature gradient is discussed as well. The effect of inertia causes an
additional nondiffusive turbulent flux of particles that is proportional to the mean temperature gradient. Inertial
particles are concentrated in the vicinity of the minim@ar maximum of the mean temperature of the
surrounding fluid depending on the ratio of the material particle density to that of the surrounding fluid. The
equation for the turbulent flux of particles advected by a low-Mach-number compressible turbulent fluid flow
is derived. The large-scale dynamics of inertial particles is studied by considering the stability of the equilib-
rium solution of the derived equation for the mean number density of the particles. A modified Rayleigh-Ritz
variational method is used for the analysis of the large-scale instalpifyd63-651X98)04209-3

PACS numbes): 47.27.Qb, 47.40:x

[. INTRODUCTION of passive fields are excitgdhigher moments grow faster
than lower moments, i.eys> ys_1 and ys>sy, /2. This re-
Turbulent transport of passive scalarg., number density sults in intermittency, i.e., the appearance of sharp peaks in
of particleg advected by an incompressible fluid flow in the which the main part of the field intensity is concentrated.
caseU=v has been studied in a large number of publica-Fluctuations of vectofmagneti¢ can be excited even by
tions. HereU is the particle velocity and is the velocity of  incompressible turbulent three-dimensior@D) flows of
the surrounding fluid. conducting fluid(see, e.g.[9,10]). On the other hand, pas-
Interesting features in turbulent transport of passive scalasive scalar fluctuationge.g., fluctuations of the particles
appear wheJ#v. In this case certain phenomena, e.g., tur-number densitycan be excited wheb#v (e.g., for inertial
bulent thermal diffusionf1], turbulent barodiffusioi2], and  particles or whenU=v but divv+#0 (e.g., for a low-Mach-
self-excitation, i.e., exponential growth of fluctuations of thenumber compressible turbulent fluid flpy3].
number density of inertial particld$] occur. These effects Intermittency in the systems with external pumping was
are caused by inertia of particles that results in a divergenpredicted by Kraichnan in 199(see, e.g.[11]). Here the
velocity field of particles. The self-excitation of fluctuations fluctuations of passive scalar are sustained by an external
of the number density of particles results in the intermittencysource. In these systems a problem of anomalous scaling
in spatial distribution of inertial particld$]. Notably, small- arises. The anomalous scaling means the deviation of the
scale inhomogeneities in the spatial distribution of inertialscaling exponents of the correlation function of a passive
particles were observed in the laborat¢d} and in the at- field from their values obtained by the dimensional analysis.
mospheric turbulent flowks,6]. For incompressible turbulent flow and whed=v the
There are two types of intermittency of passive scalaranomalous scalings for scalar field can occur only beginning
distribution: the intermittency in the systems with and with- with a forth-order correlation functiofsee e.g.[12-14)
out external pumping. Intermittency in the systems withoutwhile for the vectorimagnetig field the anomalous scalings
external pumping was predicted by Zeldovich, Molchanov,appear already in the second momEgi®@,15.
Ruzmaikin, and Sokoloff in 198&see, e.g.[7—-9)). In these In the present paper we show that the anomalous scalings
systems under certain conditions there is a self-excitation adippear already in the second-order correlation function of the
fluctuations of passive scalar or vectaragnetig fields. The  number density of inertial particles when the degree of com-
growth ratey, of the s-order correlation function of passive pressibility o> 1/27 (whereo is the ratio of the energies in
scalar(see[3]) and vector(see[9,10) fields is given byys  the compressible and the incompressible components of the
~s2y, for s>1 [wherey, is the growth rate of the second- particles velocity. In this case there is no self-excitation of
order correlation function of passive scalar or vedioag- fluctuations of the number density of inertial particles and
netic) fields]. This implies that whery,>0 (i.e., fluctuations these fluctuations are sustained by an external source. We
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use here for simplicity thé-correlated in time random pro- of path integralfFeynman-Kac formulathat has been pre-
cess to describe a turbulent velocity field. However, the reviously employed in magnetohydrodynami&-10,17 and
sults remain valid also for the velocity field with a finite in the problems of passive scalar transport in incompressible
correlation time, if all moments of the number density of the[8,9] and compressiblgl—-3,1§ turbulent flows. The use of
particles vary slowly in comparison with the correlation time this technique allows us to derive an equation for the second-
of the turbulent velocity fieldsee, e.g.[16]). order correlation functiom = (0 (x)O(y)):

Which type of intermittency can occur in a system? It ©
depends on the Reynolds number in the case of inertial par- J
ticles and on the magnetic Reynolds number in the case of 5t —Z[Dmn(O)—Dmn(r)]m+2(rb(x)b(y))®
magnetic fluctuations. When the Reynolds number is larger 5
than a certain critical value the first type of intermittency
(without external pumpingoccurs[3]. On the other hand, —4 TUm(X)b(y»m‘f" )
when the Reynolds number is smaller than that the certain
critical value the second type of intermitten@yith external  (see Appendix A where ®=n,—N, r=y—x, |
pumping appears. =2(7h(x)b(y))N?, and Dpm=Ddpm+(7UpUp,), and N

WhenU#v the dynamics of the mean number density of =(n) is the mean number density of particlés=V,+u,
inertial particles are strongly changed. In the present Pap&indV,=(U) is the mean particles velocitp=V -u, andr
we study large-scale dynamics of inertial particles in a low-is the momentum relaxation time of a random velocity field
Mach-number compressible turbulent fluid flow. We discuss; which depends on the scale of turbulent motion. We use
here a mechanism of formation of large-scale inhomogenere for simplicity thes-correlated in time random process
neous structures in spatial distribution of inertial particlesy, gescribe a turbulent velocity field. However, the results
advected by a turbulent fluid flow with a nonzero mean témyemain valid also for the velocity field with a finite correla-
perature gradient. This effect is caused by both a divergenion time, if all moments of the number density of the par-
particles velocity field of and the correlation between tem-jcles vary slowly in comparison with the correlation time of
perature and velocity fluctuations of the surrounding fluidine tyrpulent velocity fieldsee, e.g.[16]).

[1,2]. This phenomenon results in a relatively strong nondif- Using thes-correlated in time random process allows us

fusive mean flux of inertial particles in regions with mean, provide the analytical calculations and to obtain closed
temperature gradients. Under certain conditions the initialegyts for the growth rate of the second-order correlation
spatial distribution of small inertial particles evolves into af,nctions of the particles number density, the threshold of

highly inhomogeneous large-scale pattern where domainge generation of the passive scalar fluctuations and their
with increased particles concentration border on domains deg,omalous scaling. The use of thecorrelated in time ran-

pleted of particles. _ _ dom process to describe a turbulent velocity field is an ap-
In this paper we have derived an equation for the turbuygximation. However, we study here two specific problems:
lent flux of particles advected by a low-Mach-number com-(y conditions for the self-excitations of the fluctuations of
pressible turbulent fluid flow. In our previous stu] only  the particles number densitje., the threshold of the gen-
the case with very small compressibility of fluid flove.,|  eration and growth rate of the the passive scalar fluctuations
div v|<| div U|) was considered. The large-scale dynamics he vicinity of the thresholy (ii) the anomalous scaling
are studied by considering the stability of the equilibrium penavior that is determined by the “zero mode” of the equa-
solution of the derived evolution equation for the mean nuMions for correlation functions of the particles number density
ber density of the particles for large det numbers. The («;er0 mode” is a mode with zero growth ratein the vi-
resulting equation is reduced to an eigenvalue problem for ginjty of the threshold the characteristic time of variations of

Schralinger equation with a variable mass, and a modifiedpe high-order correlation functions of the particles number
Rayleigh-Ritz variational method is used to estimate the lowgengity is much larger than the momentum relaxation time

est eigenvalue corresponding to the growth rate of the insta;(r)_ The latter allows us to use thé-correlated in time

bility. random process to describe a turbulent velocity field.
Equation(2) for b=0 was first derived by Kraichnaisee
Il. SMALL-SCALE FLUCTUATIONS [19)]). In this particular casdy=0, this equation describes a
relaxation of the second moment of particles number density.
On the other hand, wheh#0, i.e., when the velocity of
particle is divergent, Eq.2) implies both, an effect of self-
excitation (exponential growth of fluctuations of particles
ﬂJrv(n U)=DAn 1) number density caused by the second term in @y.(see
ot P P [3]) and anomalous scalings for the fluctuatiqisee Sec.
[II). Another interesting feature of ER) is the emergence
whereU is a random velocity field of the particles that they of the “internal” source term =2(7b(x)b(y))N2. The lat-
acquire in a turbulent fluid velocity field, aridl is the coef- ter means that external pumping is not required in order to
ficient of molecular diffusion. We consider the case of largesustain the fluctuations even when there is no self-excitation
Reynolds and Reet numbers. of the fluctuations of particles number dendig}.
To study the fluctuations of inertial particle concentration We consider a homogeneous and isotropic turbulent ve-
we derive equation for the second-order correlation functiorocity field of fluid. In this case the particle velocity field is
of particle concentration. For this purpose we use a methodlso homogeneous and isotropic, and it is compressible, i.e.,

2

Number densityn,(t,r) of small particles in a turbulent
flow is determined by the equation:
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V.U=0. Indeed, the velocity of particles depends on the ~ We seek a solution to the equation fdr without the
velocity of the surrounding fluid, and it can be determined €Xtérnal sourcé in the form
from the equation of motion for a particle:

CI)(t,r)=\If(r)r(1d)’zexp{—J’OrX(x)dx exp(yt). (6)

du/dt=(v—U)/7,+F/m,, (3

where 7, is the characteristic time of coupling between the Substituting Eq.(6) into Eq. (2) yields an equation for un-
particle and surrounding fluitStokes timg F is the external ~known function¥(r):
force, andm, is the mass of particles. 1

.A sol_utlon of the equation of motion for particles can be —— W —[y+Uy(r)]¥ =0, 7
written in the formU=v+ 7,f(v,7,). The second term in m(r)
this solution describes the difference between the local fluid
velocity and particle velocity arising due to the small but Where
finite inertia of the particle. We calculate the divergence of

: ; i ; ) d-1 . (d=1)(d-3)
the equanon of mptlon for particles, and after simple ma Ug(r)= X+X2+X + ) — k(r),
nipulation we obtain m(r)| r 4r
8
> S > 22 &f dvk
V'UZ—TpV-[(V-V)V]—TpV~ am . (4) 1 2 2
WZP—eJra[l—F—(ch) 1, €)
When 7, is very small Eq.(4) coincides with the results
obtained in[20]. The Navier-Stokes equation for the fluid x(r)=m(r)[(3d+1)F.—F'+2rF)/d, (10)
yields V-[(v-V)v]=—AP;/p, whereP; is the pressure of a
fluid. From the latter equation and E¢) it is seen that k(r)=—2[(d>~1)Fl/r+(2d+1)F.+rF2]/d, (11
V-U#0.

The equation of motiok3) for a particle is valid when the _and d_|stance is measured in units df, timet is measured
density of surrounding fluig is much less than the material N units of 7o=Ig/Uo, and Pe=lous/D>1 is the Pelet
densityp,, of particles p<p,) [21,22. However, the results number. _ _
of the study can be easily generalized to include the pase = NOW we discuss the above model of a random velocity
=p,, using the equation of motion of particles in fluid flow field of inertial particles. Consider a case whep<r,
presented if21,27. This equation of motion takes into ac- <70, @nd the particle radiua, <, , wherer, is the corre-
count contributions due to the pressure gradient in the fluid@tion time in the viscous dissipation scajgof a fluid flow.
surrounding the particlécaused by acceleration of the flsid The viscous scale i$,~Re "), where Re=louo/vo
and the virtual“added") mass of the particles relative to the >1 is the Reynolds number, is the kinematic viscosity of
ambient fluid. Solution of this equation for smai} coin-  the fluid, andp is the exponent in the spectrum of the turbu-

cides with the solution of Eq3) except for the transforma- lent kinetic energy of fluid. Consider the case when the ma-
tion 7,— B, 7,, Where terial densityp, of particles is much larger than the density

of fluid. Introduce a scale, in which 7,=7(r=r,), where

I,<r,<1, and(r) is the correlation time of the turbulent
. fluid velocity field in the scale. In the range ,<r <1 the

effect of inertia of particles is very small and particles veloc-

. . . . . _ _1
The correlation function of a compressible homogeneoudy 'S gloge to the fluid \Z/elgcny. In this case=1—r"
and isotropic random velocity field was derived[28]. The  1O(7,/7) andF.=0(7,/75), whereq=2p—1<3. Note

second moment for the particle velocity can be chosen in théhat the exponenp in the spectrum of kinetic turbulent en-
same form(see below ergy is different from that of the functiofru,,u,) due to the

scale dependence of the momentum relaxation tiroétur-

1+

Pp

Bi=

[
2pptp

bulent velocity of fluid[10]. Thus in the scales,<r <1 the
(Tum(x)un(x+r)>=DT[[F(r)+FC(r)]5mn effects of compressibility of the particles velocity field is
negligible.
ey / o o On the other hanﬁd, in scales<r <r , the effect of inertia
+ d Sn— m2n> +rF¢ mzn] is important so tha¥-U+0. In these scales incompressible
_1\ r r F(r) and compressiblé&.(r) components of the turbulent

(5) velocity field of particles can be chosen aB(r)

=(1—g)(1—r9Y), andF(r)=e(1-r9 ). We take into
(for details sed23]), whereF’ =dF/dr, F(0)=1—F(0), account that in the equation of motion for particldd/dt
andDy=Ugl,/d, andl, is the maximum scale of turbulent =(v—U)/7, the last term/U/7,|<|dU/dt| in the scaled,
motions,u, is the characteristic velocity in this scale, ad <r<r,. In this case the equation of motion for particles
is the dimensionality of space. The functibg(r) describes coincides with the Navier-Stokes equation for fluid in the
the potential component where&r) corresponds to the inertial range(where the viscous term is dropped pexcept
vortical part of the turbulent velocity of particles. for the termecVP. In the latter equation for particle motion
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the termv/ 7, can be interpreted as a stirring force. Thus in _ 5
this case it is plausible to suggest that the exponent in the &=B;+B; | [m(r)/r7]dr. (16)

spectrum of the second moment of particle velocity coin-
cides with that of the turbulent fluid velocity. However, The integral in Eq(16) has a singularity at=0, and there-

|V-Ulec|V-[(U-V)U]| #0.
In scales Gr <, incompressiblé-(r) and compressible

fore a unique nonsingular solution for the correlation func-
tion ®(r) for incompressible velocity field is a trivial solu-

F(r) components of the turbulent velocity field of particles tion ®=B; (i.e.,, B,=0). On the other hand, whea+0

are given by F(r)=(1—g)(1—ar?), and F r)=¢(1
—ar?), wherea=Re3~9/G=p),

there is no singularity in the functiod (r).
Now we consider an asymptotic solution of E@) for

We consider the case of large Schmidt numbers, SX>1 [i.e,, for (aPe) Y2<r<l,]. A fOYT of the 501|/Uti0n
=/D>1. This condition is always satisfied for Brownian depends on the parametér —[1= (4u”—20u+9)"?]/2.
particles. The solution of Eq(7) can be obtained using an Wheno>1/27(i.e., u>1/2) the parametef= —1/2xi(; is

asymptotic analysissee, e.g.[3,8—10,17,28. This analysis

is based on the separation of scales. In particular, the solu-
tion of the Schrdinger equatiort7) with a variable mass has

different regions where the form of the potentidh(r),
massm(r) and, therefore, eigenfunctionis(r) are different.

a complex number, and the correlation function is given by
17

where ¢;=|4u?—20u+9|Y42. This solution is valid for

O=AX*"32cog ¢ Inr+¢g),

The functions® and @’ in these different regions can be 1/27<o<1/7(i.e., 1/2<u<3/2). The parameterd and ¢g
matched at their boundaries. Note that the most importari® determined by the coefficients, and A,. When o

part of the solution is localized in small scale®.,r<1).

<1/27 (i.e., u<1/2) the parametef=—1/2+(; is a real

The results obtained by this asymptotic analysis are pre?Umber, and the correlation function is given by
sented below. Consider three-dimensional turbulent fluid

flow (d=3). The solution of Eq(7) has several character-

istic regions. In region |, i.e., for €r <l , the functiony=
—Nam(r)r and «=20ao/(l1+0) and 1mMm=2(1
+X?)/Pe, wherex;=2(120—1)/3(1+ o), and the param-
eter of compressibilityy=¢/(1—¢). Using these functions
and Eqgs(6)—(8) we get formulas for the potentiély(r) and
the functions¥(r) and®(r),

1— 2
[+ 1)+ —
1+

U0~2a,8m X2

(12
T=(1+X>)¥25(X), @d(r)= ;(1+X2)“’ZS(X),

whereX=(aBnPe)’sr, S(X)=Re[A;P#(iX)+AQ¥(iX)}
is a real part of the complex functioRy(Z) andQ%(Z) are
the Legendre functions with imaginary argumenit=iX,
Bm=(1+30)/3(1+ ), and

w=1501(1+30), (13)

{({+1)=p®—5u+2, (14

Condition @ (r =0)=const yields the ratidA,/A,. The
correlation function has a global maximum a0 and
therefore it satisfies the conditionsp’(r=0)=0, and
®"(r=0)<0, and ®(r=0)>|®(r>0)|. The functiond
for X<1 [i.e., for 0<r<(aPe) 9 is given by

B—{—w)(4+{—n)

©~By 20

1—ﬁ{x2—

3 x4+0(x6)H,

(19

whereB; ~ A, and we use Eq$13) and(14). It follows from
Eq. (15) that for the incompressible velocity field=0 (i.e.,
u=0) the correlation functiod =B, = constant. The same
result follows from the solution of Eq2) for b=0 (i.e., o
=0):

16)) :AX_(3/2_M_§i)'

where 3/2- u— ;<0 and for smallo the exponent 3/2 u

In region I, i.e., forl ,<r<r, the functiony=—x,/r,
k=20q(q—1)(q+2)r9 3%3(1+0), and 1m=2Br4"1
where \,=(q—1)B(q,0)/2(1+qo), B(q,0)=20(q+3)
—1, andB=(1+qo)/3(1+ o). Using these functions and
Eq. (8) we calculate the potentidlo(r),

1+4c?

Uo"’_ 5 1

amr

where c¢=\M(q,0)/2(q+3)(1+qo), M(q,0)=b,B?
+sz+ b3, bl(q):_8q3+7q2+3&q_36, bz(q):2(8q4
+260°%+ 17q2— 249—36), andbs(q)=3(4q9*+12q°—3¢?
—28q—12). Note thaM (o=0)= —4q?(q+3)?. The solu-
tion of Eq. (7) in this region depends on the parameter of
compressibilityo. Wheno is in the rangeo;<o<o,, the
functionsW¥(r) and®(r) are given by

V=Agrcogc Inr+¢), @(r)=w/r2"2 (19
where a=[q—0(29°+3q—6)]/2(1+qo), and o;=(B;
+1)/2(q+3), andB; are the roots of the equatiad =0.
When 0< o< the functions¥ (r) and®(r) are given by

W=rYAgrlelrarlel,  d(ry=w/r2t12 (19

In region Il r,<r <1 the functiony=—\3/r, k=0, and

1/m=2r9"1/3, where \3=—(gq—1)/2. Using these func-
tions and Eqs.(6)—(8) we get formulas for the potential
Uy(r) and the functionsl(r) and®(r),

9°-1

U -~ l
o amr2

(20

W=r 2 Asr 2+ Agr ~%%),  d(r)=As+Agr Y,



PRE 58 ANOMALOUS SCALINGS FOR FLUCTUATIONS @ . .. 3117

Whenr,<l, (i.e., Re<1/r3~P) region Il vanishes and the mum pressure of the fluidindeed, Eq(4) shows that par-
solution (17) for 0<r<I, borders on the solutiof0) for ticles inertia results iV - U= r,AP/p. On the other hand, for
l,<r<l1. _ _ large Pelet numbers?-Uoc—dnp/dt [see Eq.(1)]. There-

In large scales, i.er>1, functionsF(r) andF(r) tend  fore dn /dte— 7,AP/p. Thus there is accumulation of in-
to zero and, therefore i(r) —2/3 andU,— 0. The correla-  grtjg| particles(i.e., dn,/dt>0) in regions with the maxi-
tion function in this range is given by®(r)  pym pressure of a turbulent flui.e., where AP<0).
=Aqr'exp(-ry3|y[/2), Parameterf, ¢, and the growth  gimilarly, there is an outflow of inertial particles from the
rate of fluctuationsy are determined by matching functions regions with the minimum pressure of fluid.
®(r) at the boundaries of these regions. In particular, the This mechanism acts in a wide range of scales of a turbu-
growth rate of fluctuations of particles concentration is givenient fluid flow. Turbulent diffusion results in relaxation of
by fluctuations of particle concentration in large scales. How-
ever, in small scales where turbulent diffusion is small, the

_2[c*+(q-a)®)® ,[ Re ,p relaxation of fluctuations of particle concentration is very
B 3q*(3—p)%r2 R/’ ) weak. Therefore the fluctuations of particle concentration are
localized in the small scales.
where ra=(rp/70)1’(p‘1), Re>Rée™, and for the critical This phenomenon is considered for the case when density
Reynolds number H®), of fluid is much less than the material density of particles
(p<<pp). When p=p, the results coincide with those ob-
o) p-3 3- —a tained for the casep(<p,) except for the transformation
Re=r}"“exg — 7Tk+arctanT Tp— By Tp. FOr p=p, the value dn,/dtx—pg, 7,AP/p.
Thus there is accumulation of inertial particle., dn,/dt
32— p—a+c, ¢ >0) in regions with the minimum pressure of a turbulent
+arctan } (22 fid sinceB, <O.
where k=1,2,3,... andc, =tan(; Inl,+¢y). Therefore,

Ill. ANOMALOUS SCALING FOR FLUCTUATIONS

the fluctuations of particle concentration can be excited with- OF PARTICLES CONCENTRATION

out an external source.

The divergent velocity field of inertial particles is the  Problems of anomalous scalings for vedimagneti¢ and
main reason for the self-excitatidexponential growthof  scalar(particles number density or temperatufields pas-
fluctuations of a concentration of small particles in a turbu-sively advected by a turbulent fluid flow are a subject of an
lent fluid flow. Indeed, multiplication of Eq(1) by n, and  active research in the last yeasee, e.g.[10-15,19). For

simple manipulations yield an incompressible turbulent flow and whee= v the anoma-
5 lous scalings for scalar field can occur only beginning with a
an fourth-order correlation functiofsee e.g.[12—14)). In this

—L+(V-9=—n}(V-U)—2D(Vny)?, (23

at section we show that the anomalous scaling appears already

in the second moment of the number density of particles
where S=n2U—DVn?. The latter equation implies that if when the degree of compressibility>1/27.

V -U<0, a perturbation of the equilibrium homogeneous dis-. € Study the case when there is no self-excitation of the
tribution of inertial particles can grow in time, i.e. fluctuations of the number density of inertial particles, i.e.,

i , cr) i i inarti
(a/at)fn§d3r>0. However, the total number of particles is the case when ReR€®). Consider fluctuations of inertial

conserved. Averaaing E@23) over a volumeV. we obtain particle concentration in the presence of a souice _and
ging EG23) * we study a zero mode for Eq2), i.e., the mode withy

ﬁ(”f,) - o =0. Substitutin_g Eq(6) in Eq. (2) yields an equation for the
0 ~—(ng(V-U))—=2D((Vnp)*). (24)  unknown functiony(t,r),
Here we used (V- S)dV, =[S dA</n(V-U)dV, , and W_LPY 29
Ais a closed surface. Equati¢®4) implies that the variation gt m g2 o(N) g+ (1),

of particle concentration during the time interval,

=lo/ug, around the valuen{”) is of the order of on, - i . .
where f(r)=rl(r)exdfox(X)dx]. Determine the stationary

0 — . . A . .

~—n§) )TO(V'U)’ 'vv.hereuo s the chz'araf:tensnc \(/;Iocny N solution of Eq.(25). The external source in these scales is
the energy containing scalg. Subsnuitmgnp:np +0Ny  hosen as followst (r)=1o(1—r®), wheres>0, and forr
into Eq. (24) yields d(n})/at~27o(n5(V-U)?). Therefore, >1, |(r)=0. The general solution of E¢25) reads
the growth rate of fluctuations of particles concentratipn
~27((V-U)?). This estimate in a good agreement with the % _
analytical results obtained above. Y(r)=Av¥,+ B‘I’2+f G(r,&)f(&)d¢, (26)

The physics of self-excitatiofexponential growth of 0
fluctuations of particle concentration is as follows. The iner-
tia causes particles inside the turbulent eddy to drift out tovhere¥, and ¥, are solutions of Eq(25) with =0, and
the boundary regions between eddig® regions with maxi- Green functionG(r,¢) is given by
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W(r)Wo(8) —Wo(r)Wy ()
V(W)= V() W1(E)
andH(y) is a Heaviside function. Equatiof26) yields the

formula for the second momenk(r) in different regions.
Whenl , <r<r,

G(r,§)=m(§H(r—§)

|

0 r
2Bu[(3—q+a)’—c?]
[for 1/27<o<min(o,1/7)], and

3-q

D =r"3(Agrlcl+ A rlch—

lo

r3-d
2B (3—qg+a)?+c?]

d=Asr2cogcInr+¢q)—

(for o1 <o <1/7). Whenr<r<1

o 4y

D(r)=As+Agr 9= 5 o——r°79,
( ) 5 6 2(3_q)

and whenr>1 the function®(r)=A,/r. Matching func-

tions ®(r) and ®'(r) at the boundaries of these regions

yields the constan,. The termxr3~9 in these equations
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and(16)]. The condition Re-Re* means that the solution is
independent of the chemical reactiojos phase transitions
This solution coincides with that given by E(L2). On the
other hand, for an incompressible fluid flows€0) with
chemical reactiongor phase transitionsand without an ex-
ternal pumping only a solution witho®/dr),_ >0 exists
for small but finite molecular diffusion. This solution cannot
be a correlation function.

Consider a solution for the second moment of the number
density of particles in the region Il,,<r<r.<r,, where
the scaler .= (7./7,) Y 9 is determined by the condition
1/(mr?)~ 1o/ 7., i.e., when the effect of chemical reactions
(or phase transitiongs essential. When tir?<r,/ ., the
function ¥ is determined by an equatiorrd 1y”

— (19! 7B)¥ =0. The solution of this equation is given by

A /ﬂrwq)/z)
70

R [ir(3q)/2) , (I)=\If/ra+l’2,
T8

(28)

2

‘P:AarllzKl/wq)( 3-g

~ r(ql)/4ex%

2

3—¢q

corresponds to a normal scaling for the second moment of

inertial particles concentration, whereas the term 9 in the
ranger ,<r<1 corresponds to the anomalous scaling. Whe
o1<0<1/7 the anomalous scaling in the rarigesr <r, is
complex (er ~a*ilel),

IV. EFFECT OF CHEMICAL REACTIONS (OR PHASE
TRANSITIONS) ON SELF-EXCITATION
AND ANOMALOUS SCALING OF FLUCTUATIONS
OF PARTICLES NUMBER DENSITY

n

whereK (y) is the modified Bessel function of the second
type. Since\ry/78r 3~ 92<1 the effect of chemical reac-
tions (or phase transitionscauses strong localization of the
solution given by Eq(28) in the scales=r.. Whenl <r
<r the effect of chemical reactiorier phase transitionss
negligible and the correlation functish is given by Eq(18)
which is valid for maxg,1/27)<o<o, (see Sec. )l The
latter solution determines the self-excitation of fluctuations
of particles number density when R&®d®, and the com-

Now we study fluctuations of the number density of smallplex anomalous scaling when R®RE® (see Secs. Il and

particles in a turbulent fluid flow with chemical reactiofus

lII'). Solutions(18) and (28) are matched in the vicinity

heterogeneous phase transitions, e.g., evaporation or condenf.. This means that in the case of chemical reacti@ns

sation). The source of particlegr droplets is | .. Consider

a homogeneous equilibrium with=0. Now we study de-
viation from this equilibrium. Linearizing Eq1) with the
sourcel. for the number density of small particles in the
vicinity of the equilibrium we obtain an equation for small
perturbations,

np o
WJrV-(npU):DAnp—(ro/TC)np (27)

(see[24]), where 7o/ 7= —dl./dn,, and 7. is the charac-
teristic time of chemical reactiofor phase transition Equa-

phase transitionsthere is a possibility for both, the self-
excitation of fluctuations of the particles number density
when Re>Rd®), and for the complex anomalous scaling
when Re<R® and if there is an external pumping.

On the other hand, solutio(28) with its first derivative
cannot be matched with that given by E49). The latter
solution is valid for 1/2% <o, and determines the real
anomalous scaling. Consider the cager.<1. The effect
of chemical reactiongor phase transitionss essential for
r=r. and the solution for the second-order correlation func-
tion @ of the particles number density is given by Eg8)
with 8=2/3. Whenr ;<r <r the correlation functiorb is

tion for the second moment of the number density of pardetermined by Eq(20). These two solutions with their first
ticles coincides with Eq.(2) except for the change derivatives cannot be matched. Soluti@d) determines also
(7b(x)b(y))—(7b(x)b(y))— 79/ 7. In this case all equa- the real anomalous scaling. This means that in the case of
tions (6)—(11) are not changed except for the charldge  chemical reactiongor phase transitionghe real anomalous
—Uy+ 7/ 7.. Therefore in this case we can use the samescaling does not exist.

analysis that is performed in Secs. Il and lll. Indeed, con- Remarkably, chemical reactiofisr phase transitionslo
sider a solution of the equation for the second moment of theot affect the threshold K& for self-excitation of fluctua-
number density of particles. In region I <l ,, a nonsin-  tions of the particles number density and the complex
gular solution for the correlation function exists only for a anomalous scaling of the fluctuations. Chemical reactions
compressible fluid flow wher>1/27 and Re-Re*, where  phase transitionsn the case ,>r . only cause strong local-
Re* = (7o/7,) @ P/G~9 [see the comments after Eq45) ization of solution for the second-order correlation function
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@ in the vicinity of r~r.. Note also that wher.< 7, (i.e., V.U=V.v— 7, V. (dv/dt)+O(7?)

r.>1) the effect of chemical reactiorisr phase transitions P P

is negligible. =Vv+ 7,V (VP /p)+O(72). (31)
The physics of the effect of strong localization of fluctua-

tions due to chemical reactiorter phase transitionscan be We study the large-scale dynamics of small inertial par-

illucidated using an example of the simple irreversibleticles and average E@29) over an ensemble of random ve-
chemical reactio— C. During transport of an admixture  locity fluctuations. For this purpose we use the method of
by a turbulent fluid flow the number density of the admixturepath integrals. The equation for the mean filslef (n,,) is
A decreases due to the chemical reacten C with a very N
short timer.<< 79. Thus turbulent diffusion does not contrib- N s A _
ute to the mass flux of a reageAt Turbulent mixing is at +V-[NVer—DVpN]=0 (32)
effective only for the produdf of the reaction. The situation R
becomes more complicated for a multicomponent chemicalsee Appendix A where D=Dgnand Vez=V,—(7buy).
reaction with the inverse reaction. The effect of depletion ofEquation(32) was derived for Pe 1. It can be shown that
the turbulent diffusion is similar to that for the reactidgn  for Pe<1 and arbitrary velocity field the equation for the
—C. The total chemical relaxation time, is determined by mean field coincides with Ed32).
an equationr, *==|_, 7, *, wherer; is the relaxation time Now we calculate the velocity ;. Using the equation of
of the j component. The components with timg> 7, have ~ Stateé Pr=«gTip/m, and Eg. (31) we obtain (7ub)
the turbulent diffusion coefficient-D+, whereas turbulent ~(7(V-U)u)+(7,05/T,)(7UAB), where ovi=kpT,/
diffusion coefficients for the components with~r, are m,,m, is the mass of molecules of surrounding fluid and
strongly reducedfor details sed¢24]). This effect of strong Ty(t,r) is the temperature field with a characteristic value
depletion of turbulent diffusion can be interpreted as strondr, , 6 are fluctuations of temperatureg is Boltzmann con-
localization of the fluctuations of particle number density. stant. We neglect here the second momenfap), since the
mean turbulent mass flux of the surrounding fluid vanishes in
V. TURBULENT FLUX OF PARTICLES a finite domain surrounded by solid boundaries. Heemdu
Now we study the large-scale dynamics of inertial par_are fluctuations of the density and veIocity~of the ﬂUi(_j' On
ticles. The evolution of the number density(t,r) of small ~ the other hand, the mean turbulent heat flux) 6(x)) is
particles in a turbulent flow is determined by the equation nonzero in the presence of an external mean temperature
gradient, i.e.(u(x)8(x))=—x1VT, where the total tem-
perature isT=T+ 6, T=(T) is the mean temperature field,
X7~ Ugl /3 is the coefficient of turbulent thermal diffusivity.
Therefore, the effective velocity is given by

an, o N
7+V~(npU)=—V-JM, (29

where the flux of particlesy, is given byJM=—D[Vﬁnp |

+ ktﬁTf/Tf+kpﬁ P¢/P¢]. The first term in the formula for VeﬁIVp—<r(ﬁ-ﬁ)ﬁ>— ﬂ( ﬂ) In(Rek)VT,
the flux of particles describes molecular diffusion, while the Peim,

second term accounts for the flux of particles caused by the

- Jo Where Rg =Re F2 Re=1,uy/max(vy, xo) is the Reynolds
temperature gradier? Ty (molecular thermal diffusion for —, yper g the coefficient of molecular thermal conduc-
gases or thermophoresis for particles, see, E§]), and the . it ,dF RPN WE. W h identit
third term determines the flux of particles caused by the prest—IVI y, and Fo(r) =(u(r))/us. We use here an identity

sure gradieniVP; (molecular barodiffusion Herek.xn, is 05 1(m,
the thermal diffusion ratioDk; is the coefficient of thermal T P_e(m_)
diffusion, kycn, is the barodiffusion ratioDk, is the coef- oro »

ficient of barodiffusion, and’s and Py are the temperature 4nq pe-uyl,/D, is the Pelet number and the molecular
and pressure of surrounding fluid, respectively. diffusion coefficientD, = «T, /(6ma, pv).

We consider here the case of large Reynolds a'rcdeP_e Equation(32) with this effective velocityV 4 can be re-
numbers and do not take into account the effect of particle§ iiten in the form

upon the carrying fluid flow. The solution of the equation of

motion for small particles withp,>p yields N -

£ TV NV ==V (Ir+du), (33

U=V(t,Y (1) = [ v/t +(v-V)V]+O(72),  (30)
where
(see, e.g.[20]), wherev is the velocity of the surrounding
fluid, Y(t) is the position of the particlep,, is the material B kre_ Kpo .
density of particles, ang is the density of the fluid. Jr=-Dr ?VT_ FVP+F0VN ' (34)
In this study we consider a low-Mach-number compress-

ible turbulent flowV-v#0. The velocity field of particles is kr=N[Fo+T(70+00f)], (35)
also compressible, i.eV-U#0. Equation(30) for the veloc- 3 1
ity of particles and Navier-Stokes equation for the fluid for no:_(ﬂ) (_ In Re, (36)
large Reynolds numbers yields Pelm,/\ T,
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where og=70/(2In Re) f=InFy, and Dy=ugl/3 is the outflow of inertial particles from regions with the minimum
coefficient of turbulent diffusiork; can be interpreted as the pressure of fluid. In a homogeneous and isotropic turbulence
turbulent thermal diffusion ratio, anidky is the coefficient  without large-scale external gradients of temperature a drift
of turbulent thermal diffusionkp=FyN can be interpreted from regions with increaseftlecreasedconcentration of in-

as the turbulent barodiffusion ratio amkp is the coeffi-  ertial particles by a turbulent flow of fluid is equiprobable in
cient of turbulent barodiffusion. Note that for R4 and all directions. Therefore the pressufemperaturg of the
Pe>1 both turbulent diffusion coefficients are much largersurrounding fluid is not correlated with the turbulent velocity
than the corresponding molecular coefficiefite., Dy>D, field and there exists only a turbulent diffusion flux of iner-
and Dtk>Dk;), andD1kp>Dk,. Using Eq.(30) the par- tial particles.

ticle mean velocity can be written in the form The situation is drastically changed when there is a large-
scale inhomogeneity of the temperature of the turbulent flow.
Vi J In this case the mean heat flyx )+ 0. Therefore fluctua-
i=Vi—1,— —m,—{(uju )+ ib). . L :
(Vp)i=Vi=p gt P IX; (i) + 7p(u;b) (37) tions of both temperature and velocity of fluid are correlated.

o _ Fluctuations of temperature cause fluctuations of the pressure
Taking into account Eq(37) the turbulent flux of particles  of the fluid. The pressure fluctuations result in fluctuations of

T in isotropic turbulence is given by the concentration of inertial particles. Indeed, an increase
(decreasgof the pressure of the surrounding fluid is accom-
I =Jo— Ev*<uz> (38) panied by accumulatiofoutflow) of the particles. Therefore,
TV 3 ' the direction of the mean flux of particles coincides with that

of the heat flux, i.e.(ﬁnp>m<ﬁa>m—ﬁT. The mean flux of
the inertial particles is directed to the minimum of the mean
temperature and the inertial particles are accumulated in this
region.

The evolution of the mean fieldl is determined by Eq.
(33). Substitution

whereJ; is determined by Eq.34) and

.
ky= N[FO( 1+ T—p) +T( 70+ oof)
0

Tp
kp:NFO l+_ .
70

N(t,r)=N, Vy(Z)exp yot)ex;{ - %f xo(Z2)dZ+ik-r,
The second term in Eq38) describes the effect of turbo-
phoresis(see[26,27). +Ny(r)

Compressibility of the background fluid is important )
when the size of particles smaller than one microméser reduces Eq(33) to the eigenvalue problem for the Schro
for the gaseous admixturdn this case the effect of particle dinger equation,
inertia is very small and the main contribution to the effect of 1
the turbulent thermal diffusion is due to the compressibility = _ _
of the background fluid. On the other hand, when the size of mo\PO(ZH[WO Uo(2)]¥o(2)=0, (39
particles is larger than 5—10m the effect of particles inertia . o
is very important and the contribution to the effect of the WhereWo=— o, A'=dA/dZ, and the potentidl, is given
turbulent thermal diffusion caused by particles inertia isby
much larger than that due to compressibility of the back-
ground fluid[i.e., T( 5o+ oof) <Fg, see Eq(35)]. Certainly, U :i
the compressibility V -v#0) of the background fluid cannot %" m,
be ignored completely since otherwise we cannot satisfy the
continuity equation and the equation of state simultaneousl9lnd
in the presence of a nonzero mean temperature gradient.

2 ’
Xo  Xo
Z+7+K0),

T! P!
X0=f’+?—3+ F—(7]0+0'0f)T’,
VI. LARGE-SCALE INSTABILITY 0

Let us study the large-scale dynamics. The equilibrium ) T\" (P"\" f'P’ ,
solution of Eq.(33) can be unstable. The mechanism of the ~ kKo=K —(?) +<3) + 5 " g (mtaofl)T
instability for p,>p is as follows. The inertia causes par- 0
ticles inside the turbulent eddy to drift out to the boundary N ool
regions between eddigthe regions with decreased velocity - T( 1+ F_o)
of the turbulent fluid flow and maximum of pressure of the
surrounding fluigl. Thus, inertial particles are accumulated in Here my=ex{ —f(2)], the axisZ is directed along the mean
regions with the maximum pressure of the turbulent f|uid.temperature gradient, and the wave vedtds normal to the

Indeed, the inertia effect results ﬁﬁ-UocrpA P;#0. On the axisZ. In deriving Eq.(39) we take into account that for an
other hand, for large Peclet numbéfsUe=—dn,/dt. The isotropic _thbU@nce(Um(X)Un(X)):U(ZJ exp(f) mn/3. Equi-
latter implies that in regions with the maximum pressure oflibrium distribution of the mean number densily(r) is
turbulent fluid(i.e., whereA P;<0) there is an accumulation determined by equatioBV ,Ny=VN,. Equation(39) is

of inertial particles(i.e., dn,/dt>0). Similarly, there is an written in the dimensionless form, the coordinate is mea-
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sured in unitsAt, timet is measured in unitd2/Dy, the  where the unknown parameterg andZ, can be found from
wave numbek is measured in unitd 7 *, the temperatur&  the condition of the minimum of the functidfa,,Z,) [see

is measured in units of temperature differesdein the scale  EQ. (43)]. Here we use the following spatial distributions of
A+, and concentratiohl is measured in unitsl, . f(Z) andT(2):

Now we use a quantum mechanical analogy for the analy-
sis of the large-scale pattern formation in the concentration
field N of the inertial particles. The instability can be excited
(vo>0) if there is a region of a potential well wheké,

<0. The positive value o¥W, corresponds to the turbulent whereB,<1 ande,<1. These distributions satisfy the nec-

diffusion, whereas a negative value \b results in the ex-  egsary conditiori4l) for the excitation of the instability. We
citation of the instability. Consider the ca®/P<T'/T. consider a cas&, 1<b,
" .

f(Z)=—boZ? exp(— BoZ?), (46)

T(Z)=(T, +Z2+az)exp — €,Z?), (47)

The potentiall, can be rewritten as Substituting Eqs(45) and (47) into Eq. (43) yields
1 iy T\2 [T ooTf'\2 1,
Yomam "~ 7 T\ 7R, 1= =m0+ —splag(ao—bo)™”
0

2

T 1
|t E (ot aoh)T! | +4k2+ 21" +bo( gt bo) b+ 2an(beZ5— 1)1}
0
aoboz(z) (CYo_bo)l/2
T 2 , ooTf’ 2 xex;{ — 77% [2(ag—2bg)
—2?—F—0(7lo+oof)T —( Fo ) } (40) ao~bo 4(ag—2bg)
. o ) agboZ;
The potentiall, can be negative if +(2agZo+a(ay—2bg))ex (@o—Dby)(ag—2bg) )"
0 0 0 0
20721 fp— 7o 2 0. (41 48
? F—O(ﬂ0+0'0 ) Fo <0. ( )

Here we consider the case k1. This implies long-wave

) i perturbations in the horizontal plane. Thus, the modified
In order to estimate the first energy lewal, we use a Rayleigh-Ritz method allows us to estimate the growth rate

modified variational methode.g., a modified Rayleigh-Ritz 5 the instability. For example, whemy< 7, (i.e., the inho-

method. The modification of the regular variational method mogeneity of turbulence is not stronghe growth rate of the

is required since Eq39) can be regarded as the Scttirmger instability in the dimensional form is given by
equation with a variable masgs,(Z). Now we rewrite Eq.

(39 in the form 3boD+
. . 1 d? 2A7
HWo=WoWo, H=Uo~ Mo 472 (“42) Thus, it is shown here that the equilibrium distribution of the

number density of particles is unstable. The instability results
The modified variational method employs an inequality in the formatﬁon of an inhomogeneous di_stribution of t_he
number density of particles. The exponential growth during
the linear stage of the instability can be damped by the non-
Wos=I, I= f mo\If*Fmrdz, (43 linear effects(e.g., hydrodynamic interaction between par-
ticles and a turbulent fluid flow, a change of temperature
_ _ . L . distribution in the vicinity of the temperature inversion
whereW is an arbitrary function that satisfies a normaliza-|ayep The obtained estimate of the growth rate of the insta-
tion condition bility is in agreement with the numerical solution of §g9).

f meP* WdZ=1. (44) VIl. CONCLUSIONS

Fluctuations of the number density of inertial particles in
The inequality (43) can be proved if one uses the ex- & turbulent fluid flow are investigated. It is shown that the
pansion \I’=E°°:oap‘l'§)p), where EZ:OIa;‘;l:l and anomalous scalmg app_ears_already in the second moment of
fmo(\l,(()p))*q,(()k)dzz 8o The eigenfunctionslfgp) satisfy the numbgri fjensny of mgmal partlcl.es when thg degree of
(D) ®) compressibility of the particles velocity>1/27. It is dem-
the equatiorH Wy =W, g™ onstrated that the inertia of particles in a homogeneous and

We chose the trial functiol” in the form isotropic turbulent fluid flow causes a self-excitati@xpo-
nential growth of fluctuations of particle concentration. The
V=Ag exd —ao(Z-Zp)?2], Ao growth rates of the higher moments of particle concentration
b\ V4 b.72 is larger than those of the lower moments, i.e., particles spa-
:(ao 0 p( @0%0%0 (45  fial distribution is intermittent. This process can be damped
™ 2(agt+bg)/’ by the nonlinear effectge.g., two-way coupling between
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fluctuations of particles concentration and turbulent fluid t—tg R

flow). Note that when the particles velocity field is diver-  &(t,to) =X— Jo Ults, &(t,ts)Jds+(2D) Yaw(t—ty),

gence free, i.e.y-U=0, all of the moments of the concen- (A1)

tration field do not grow and there is no intermittency with-

out an external source of fluctuations of particlewhereU=v,, t;=t—s, andw(t) is a Wiener process. Equa-

concentration. When the inertia effect is negligiideg., for  tion (A1) describes a set of random trajectories that pass

small size of particles or gaseous admixjubait the fluid through the poink at timet. The solution of Eq(1) with the

velocity field is divergent, i.e.V-u#0, the moments of the initial condition ny(t=tg,x)=ng(x) is given by the

concentration field grow and there is intermittency withoutFeynman-Kac formula

an external source of fluctuations of particle concentration. .

In this case Eqs(21) and (22) with r,=1 determine the Np(t,x) =M{G(t,to)ng[ &(t,to) ]} (A2)

growth rate of fluctuations of particle concentration and the

critical Reynolds number, respectively. Thecorrelated in  (See. €.9.[28]), where

time random process is used to describe a turbulent velocity .

field. However, the results remain valid also for the velocity G(t,to)zexp{ _f b*[g,g(t,g)]dg}, (A3)

field with a finite correlation time, if all moments of the

number density of the particles vary slowly in comparison .

with the correlation time of the turbulent velocity field. b,=V-U, andM{-} denotes the mathematical expectation
The analyzed effect of self-excitatiorfexponential over the Wiener paths.

growth) of fluctuations of particles concentration is impor- Now let us derive the equation for the mean fid\d

tant in turbulent fluid flows of a different nature with inertial =(n,) and for the second-order correlation function

particles or dropletge.g., in atmospheric turbulence, com- ®(t,x,y)=(0(t,x)O(t,y)) for the number density of par-

bustion, and in laboratory turbulencén particular, this ef-  ticles using Eq.(1), where ®=n,—N. The procedure of

fect causes formation of inhomogeneities in spatial distribuderivation is outlined in the following:

tion of fuel droplets in internal combustion engines. The self- (i) If the total fieldn,, is specified at instartt then we can

excitation of fluctuations of particle concentration is determine the total field,(t+ At) at near instant+ At by

observed in atmospheric turbulence, e.g., this effect causeseans of substitutions—t-+ At andty—t in Eq. (A2). The

formation of small-scale inhomogeneities in droplet cloudsresult is given by

[5,6]. Small-scale inhomogeneities in the spatial distribution

of inertial particles were observed also in laboratpty: Np(t+At,x)= M{G(t+At,t)np[t,§(t+At,t)]}, (A4)
Large-scale dynamics of inertial particles advected by a

low-Mach-number compressible turbulent fluid flow with a where

nonzero mean temperature gradient is studied as well. The

equation for the turbulent flux of particles in a low-Mach-

number compressible fluid flow is derived. A modified

Rayleigh-Ritz variational method is used for the analysis of

the large-scale instability that results in formation of large- At .

scale inhomogeneous structures in the spatial distribution of &(t+At,t)=&y= f U(t,.&,)do+(2D) aw(At),

inertial particles. Note that the large-scale instability can be 0

also interpreted as an inverse cascade of the passive scalar

t+At R
G(t+At,t)=exp{—f b, (o,&,)d|,
t

(e.g., particles, number density t=t+At—o, and&(ty t) =&, i. e & =&t +ALL,).
(ii) Expansion of the funcnonsp(t,gm) and the velocity
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APPENDIX: DERIVATION OF EQUATIONS FOR THE 1 52

#°n .
MEAN FIELD AND THE SECOND-ORDER F 2 (E =) m(En— X)ot
CORRELATION FUNCTION FOR THE NUMBER 2 X ﬂx
DENSITY OF PARTICLES (A5)

We study the fluctuations and large-scale dynamics OUsmg equation for the Wiener path we obtain
small inertial particles and average E#)) over an ensemble

of random velocity fluctuations. For this purpose we use the R to—tg R
method of path integrals whereby the solution of E.is [&(t2,t1) =X]m= —f Un(ts,&)ds
reduced to an analysis of the evolution of the concentration 0

field ny(t,r) along the Wiener pat: +(2D) Y (t,—ty), (AB)
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where&(t,,t,—s)=&,. Expanding the velocity (ts, &) in
Taylor series in the vicinity of poink and using Eq(A6)
yields

> U,
Um(tSafs):Um(tsaX)_Ulof,_XlS

+(2D)1’2‘2U—lewl(s)+ el (A7)

Substituting Eq(A7) into Eq. (A6) and calculating the inte-
grals in Eq.(A6) accurate up to the terms O[(t,—t;)?]
yields

[&ty,t)—X]m

U U
=—(tp—t)Up+ %(tz—mzu'ﬁ— mmm
-ty
xf wds+2Dw(t,—t)+---.  (A8)
0

Combination Egqs(A8) and (A5) yields the fieIdnp(t,EAt)

< ang U-A luaumAZ
np(t,fm)—np(t,xﬁa mAt+ 5 '(9_x|( t)

AUy At
+/2Dw,,— 2D—mf w,ds
O7X| 0

2

n
P 2
+_ +

2 I Xs[UmUS(At) 2DW Wy

— 2D At(Uwe+Ugwy)], (A9)

Here we keep the terms up ®O[ (At)?].
(i) Now we expand the functiob, [, &t+At,o)] in

the Taylor series in the vicinity of point, and calculate the
integral

t+At .
f b,[o,&1t+At,0)]do.
t

The result is given by

t+At R b,
f b, (o,&,)do=b, (t,x)At— 3 U, (At)?
t 9Xq

db, (T+At
+42D J Wodo+ - - -
(9Xq T

(A10)
Here we also keep terms O[ (At)?]. Using Eq.(A10) we

calculate the function G(t+At,t) accurate up to
~O[(A1)?]:
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Loodb
G(t+ALD=1-b, (t,)At+ 3 Ug—-=(Al)
q
Jb t+At
+1b2(At)?— 2D *f w,do.
(?Xq t

(A11)

(iv) Substituting Eq(A11) and(A9) into Eq.(A4) allows
us to determine the number density(t+ At,Xx):

np(t+At,x)= M(np(t,x)Jrnl(At)

+n,(At)?+D

7y A12
é’XmﬁX| WmWs ’ ( )

where

anp<1 U,

Np=-—"13 |(7—X|+b*Um)

X
2

TN N VY
Vox, ]2 axpdx, ™

1
+§np

Note that the velocityJ is determined by the turbulent ve-
locity v of the surrounding fluidsee Eq.(30)]. In order to
determine the mean fieldl we average Eq(Al12) for the
number densityn,(t+At,x) over the turbulent velocity,
(i.e. N=(n)). Note thatU=V +u, whereV,=(U) is the
mean velocity and is the random component of the velocity
of particles. It is important to note that the Wiener random
processw(t) and the turbulent velocity(t,x) are indepen-
dent random processes, and therefore we can change the or-
der of averaging{M{f})—M{(f)} (see, e.g.[8,9]). On the
other hand, the random processgs$) and u(t,ém) are cor-
related. We also assume that the velocitiés both intervals
(0t) and ¢,t+ At) are independent, because we consider the
random flow with a short time of renewal. Note that averag-
ing over the Wiener paths corresponds to the averaging over
the molecular processes with very small characteristic scales.
On the other hand(f) determines the averaging over the
turbulent velocity field with scales that are larger than the
molecular ones.

(v) Now we calculate

N(t+At,x)— N(t,X)
At ’

and pass to the limint—0. HereN=(n,). The result is
given by

N - >
E+[(V—<T(U‘V)U>—2<Tbu>)'V]N

°N

= BerNt Dom
pY~m

(A13)
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whereBgy=— (V- V) +(7(u- V)b)+(7b?). Using the iden-

tity

we obtain Eq(32) for the mean number density of particles.

d

J R
Tupa—xpum> = a—)ﬂ)(rupum) —(1u(V-u))

(vi) Now we derive equation for the second-order corre-
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calculate the correlation functiond(t+At,x,y)=(0(t
+At,x)O(t+At,y)) by means of Eq(A12). The obtained
equation allows us to find the function
d(t+At)—D(1)
At '

Passing to the limiAt—0 yields, Eq.(2) for the correlation

lation function for the number density of particles. Let usfunction ®.
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